Tianshou/examples/dqn_example.py

86 lines
3.4 KiB
Python

#!/usr/bin/env python
import tensorflow as tf
import numpy as np
import time
import gym
# our lib imports here!
import sys
sys.path.append('..')
import tianshou.core.losses as losses
from tianshou.data.replay import Replay
import tianshou.data.advantage_estimation as advantage_estimation
import tianshou.core.policy as policy
def policy_net(observation, action_dim):
"""
Constructs the policy network. NOT NEEDED IN THE LIBRARY! this is pure tf
:param observation: Placeholder for the observation. A tensor of shape (bs, x, y, channels)
:param action_dim: int. The number of actions.
:param scope: str. Specifying the scope of the variables.
"""
net = tf.layers.conv2d(observation, 16, 8, 4, 'valid', activation=tf.nn.relu)
net = tf.layers.conv2d(net, 32, 4, 2, 'valid', activation=tf.nn.relu)
net = tf.layers.flatten(net)
net = tf.layers.dense(net, 256, activation=tf.nn.relu)
q_values = tf.layers.dense(net, action_dim)
return q_values
if __name__ == '__main__':
env = gym.make('PongNoFrameskip-v4')
observation_dim = env.observation_space.shape
action_dim = env.action_space.n
# 1. build network with pure tf
observation = tf.placeholder(tf.float32, shape=(None,) + observation_dim) # network input
with tf.variable_scope('q_net'):
q_values = policy_net(observation, action_dim)
train_var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) # TODO: better management of TRAINABLE_VARIABLES
with tf.variable_scope('target_net'):
q_values_target = policy_net(observation, action_dim)
# 2. build losses, optimizers
q_net = policy.DQN(q_values, observation_placeholder=observation) # YongRen: policy.DQN
target_net = policy.DQN(q_values_target, observation_placeholder=observation)
action = tf.placeholder(dtype=tf.int32, shape=[None]) # batch of integer actions
target = tf.placeholder(dtype=tf.float32, shape=[None]) # target value for DQN
dqn_loss = losses.dqn_loss(action, target, q_net) # TongzhengRen
total_loss = dqn_loss
optimizer = tf.train.AdamOptimizer(1e-3)
train_op = optimizer.minimize(total_loss, var_list=train_var_list)
# 3. define data collection
training_data = Replay(env, q_net, advantage_estimation.qlearning_target(target_net)) #
# ShihongSong: Replay(env, pi, advantage_estimation.qlearning_target(target_network)), use your ReplayMemory, interact as follows. Simplify your advantage_estimation.dqn to run before YongRen's DQN
# maybe a dict to manage the elements to be collected
# 4. start training
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
minibatch_count = 0
collection_count = 0
while True: # until some stopping criterion met...
# collect data
training_data.collect() # ShihongSong
collection_count += 1
print('Collected {} times.'.format(collection_count))
# update network
data = training_data.next_batch(64) # YouQiaoben, ShihongSong
# TODO: auto managing of the placeholders? or add this to params of data.Batch
sess.run(train_op, feed_dict={observation: data['observations'], action: data['actions'], target: data['target']})
minibatch_count += 1
print('Trained {} minibatches.'.format(minibatch_count))
# TODO: assigning pi to pi_old is not implemented yet