Change the behavior of to_numpy and to_torch: from now on, dict is automatically converted to Batch and list is automatically converted to np.ndarray (if an error occurs, raise the exception instead of converting each element in the list).
150 lines
5.5 KiB
Python
150 lines
5.5 KiB
Python
import h5py
|
|
import torch
|
|
import pickle
|
|
import numpy as np
|
|
from copy import deepcopy
|
|
from numbers import Number
|
|
from typing import Any, Dict, Union, Optional
|
|
|
|
from tianshou.data.batch import _parse_value, Batch
|
|
|
|
|
|
def to_numpy(x: Any) -> Union[Batch, np.ndarray]:
|
|
"""Return an object without torch.Tensor."""
|
|
if isinstance(x, torch.Tensor): # most often case
|
|
return x.detach().cpu().numpy()
|
|
elif isinstance(x, np.ndarray): # second often case
|
|
return x
|
|
elif isinstance(x, (np.number, np.bool_, Number)):
|
|
return np.asanyarray(x)
|
|
elif x is None:
|
|
return np.array(None, dtype=object)
|
|
elif isinstance(x, (dict, Batch)):
|
|
x = Batch(x) if isinstance(x, dict) else deepcopy(x)
|
|
x.to_numpy()
|
|
return x
|
|
elif isinstance(x, (list, tuple)):
|
|
return to_numpy(_parse_value(x))
|
|
else: # fallback
|
|
return np.asanyarray(x)
|
|
|
|
|
|
def to_torch(
|
|
x: Any,
|
|
dtype: Optional[torch.dtype] = None,
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
) -> Union[Batch, torch.Tensor]:
|
|
"""Return an object without np.ndarray."""
|
|
if isinstance(x, np.ndarray) and issubclass(
|
|
x.dtype.type, (np.bool_, np.number)
|
|
): # most often case
|
|
x = torch.from_numpy(x).to(device) # type: ignore
|
|
if dtype is not None:
|
|
x = x.type(dtype)
|
|
return x
|
|
elif isinstance(x, torch.Tensor): # second often case
|
|
if dtype is not None:
|
|
x = x.type(dtype)
|
|
return x.to(device) # type: ignore
|
|
elif isinstance(x, (np.number, np.bool_, Number)):
|
|
return to_torch(np.asanyarray(x), dtype, device)
|
|
elif isinstance(x, (dict, Batch)):
|
|
x = Batch(x, copy=True) if isinstance(x, dict) else deepcopy(x)
|
|
x.to_torch(dtype, device)
|
|
return x
|
|
elif isinstance(x, (list, tuple)):
|
|
return to_torch(_parse_value(x), dtype, device)
|
|
else: # fallback
|
|
raise TypeError(f"object {x} cannot be converted to torch.")
|
|
|
|
|
|
def to_torch_as(x: Any, y: torch.Tensor) -> Union[Batch, torch.Tensor]:
|
|
"""Return an object without np.ndarray.
|
|
|
|
Same as ``to_torch(x, dtype=y.dtype, device=y.device)``.
|
|
"""
|
|
assert isinstance(y, torch.Tensor)
|
|
return to_torch(x, dtype=y.dtype, device=y.device)
|
|
|
|
|
|
# Note: object is used as a proxy for objects that can be pickled
|
|
# Note: mypy does not support cyclic definition currently
|
|
Hdf5ConvertibleValues = Union[ # type: ignore
|
|
int, float, Batch, np.ndarray, torch.Tensor, object,
|
|
'Hdf5ConvertibleType', # type: ignore
|
|
]
|
|
|
|
Hdf5ConvertibleType = Dict[str, Hdf5ConvertibleValues] # type: ignore
|
|
|
|
|
|
def to_hdf5(x: Hdf5ConvertibleType, y: h5py.Group) -> None:
|
|
"""Copy object into HDF5 group."""
|
|
|
|
def to_hdf5_via_pickle(x: object, y: h5py.Group, key: str) -> None:
|
|
"""Pickle, convert to numpy array and write to HDF5 dataset."""
|
|
data = np.frombuffer(pickle.dumps(x), dtype=np.byte)
|
|
y.create_dataset(key, data=data)
|
|
|
|
for k, v in x.items():
|
|
if isinstance(v, (Batch, dict)):
|
|
# dicts and batches are both represented by groups
|
|
subgrp = y.create_group(k)
|
|
if isinstance(v, Batch):
|
|
subgrp_data = v.__getstate__()
|
|
subgrp.attrs["__data_type__"] = "Batch"
|
|
else:
|
|
subgrp_data = v
|
|
to_hdf5(subgrp_data, subgrp)
|
|
elif isinstance(v, torch.Tensor):
|
|
# PyTorch tensors are written to datasets
|
|
y.create_dataset(k, data=to_numpy(v))
|
|
y[k].attrs["__data_type__"] = "Tensor"
|
|
elif isinstance(v, np.ndarray):
|
|
try:
|
|
# NumPy arrays are written to datasets
|
|
y.create_dataset(k, data=v)
|
|
y[k].attrs["__data_type__"] = "ndarray"
|
|
except TypeError:
|
|
# If data type is not supported by HDF5 fall back to pickle.
|
|
# This happens if dtype=object (e.g. due to entries being None)
|
|
# and possibly in other cases like structured arrays.
|
|
try:
|
|
to_hdf5_via_pickle(v, y, k)
|
|
except Exception as e:
|
|
raise RuntimeError(
|
|
f"Attempted to pickle {v.__class__.__name__} due to "
|
|
"data type not supported by HDF5 and failed."
|
|
) from e
|
|
y[k].attrs["__data_type__"] = "pickled_ndarray"
|
|
elif isinstance(v, (int, float)):
|
|
# ints and floats are stored as attributes of groups
|
|
y.attrs[k] = v
|
|
else: # resort to pickle for any other type of object
|
|
try:
|
|
to_hdf5_via_pickle(v, y, k)
|
|
except Exception as e:
|
|
raise NotImplementedError(
|
|
f"No conversion to HDF5 for object of type '{type(v)}' "
|
|
"implemented and fallback to pickle failed."
|
|
) from e
|
|
y[k].attrs["__data_type__"] = v.__class__.__name__
|
|
|
|
|
|
def from_hdf5(x: h5py.Group, device: Optional[str] = None) -> Hdf5ConvertibleValues:
|
|
"""Restore object from HDF5 group."""
|
|
if isinstance(x, h5py.Dataset):
|
|
# handle datasets
|
|
if x.attrs["__data_type__"] == "ndarray":
|
|
return np.array(x)
|
|
elif x.attrs["__data_type__"] == "Tensor":
|
|
return torch.tensor(x, device=device)
|
|
else:
|
|
return pickle.loads(x[()])
|
|
else:
|
|
# handle groups representing a dict or a Batch
|
|
y = dict(x.attrs.items())
|
|
data_type = y.pop("__data_type__", None)
|
|
for k, v in x.items():
|
|
y[k] = from_hdf5(v, device)
|
|
return Batch(y) if data_type == "Batch" else y
|