ChenDRAG e605bdea94
MuJoCo Benchmark - DDPG, TD3, SAC (#305)
Releasing Tianshou's SOTA benchmark of 9 out of 13 environments from the MuJoCo Gym task suite.
2021-03-07 19:21:02 +08:00

173 lines
6.6 KiB
Python

import torch
import numpy as np
from copy import deepcopy
from typing import Any, Dict, Tuple, Union, Optional
from tianshou.policy import BasePolicy
from tianshou.exploration import BaseNoise, GaussianNoise
from tianshou.data import Batch, ReplayBuffer
class DDPGPolicy(BasePolicy):
"""Implementation of Deep Deterministic Policy Gradient. arXiv:1509.02971.
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
:param torch.nn.Module critic: the critic network. (s, a -> Q(s, a))
:param torch.optim.Optimizer critic_optim: the optimizer for critic network.
:param action_range: the action range (minimum, maximum).
:type action_range: Tuple[float, float]
:param float tau: param for soft update of the target network. Default to 0.005.
:param float gamma: discount factor, in [0, 1]. Default to 0.99.
:param BaseNoise exploration_noise: the exploration noise,
add to the action. Default to ``GaussianNoise(sigma=0.1)``.
:param bool reward_normalization: normalize the reward to Normal(0, 1),
Default to False.
:param int estimation_step: the number of steps to look ahead. Default to 1.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
actor: Optional[torch.nn.Module],
actor_optim: Optional[torch.optim.Optimizer],
critic: Optional[torch.nn.Module],
critic_optim: Optional[torch.optim.Optimizer],
action_range: Tuple[float, float],
tau: float = 0.005,
gamma: float = 0.99,
exploration_noise: Optional[BaseNoise] = GaussianNoise(sigma=0.1),
reward_normalization: bool = False,
estimation_step: int = 1,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if actor is not None and actor_optim is not None:
self.actor: torch.nn.Module = actor
self.actor_old = deepcopy(actor)
self.actor_old.eval()
self.actor_optim: torch.optim.Optimizer = actor_optim
if critic is not None and critic_optim is not None:
self.critic: torch.nn.Module = critic
self.critic_old = deepcopy(critic)
self.critic_old.eval()
self.critic_optim: torch.optim.Optimizer = critic_optim
assert 0.0 <= tau <= 1.0, "tau should be in [0, 1]"
self._tau = tau
assert 0.0 <= gamma <= 1.0, "gamma should be in [0, 1]"
self._gamma = gamma
self._noise = exploration_noise
self._range = action_range
self._action_bias = (action_range[0] + action_range[1]) / 2.0
self._action_scale = (action_range[1] - action_range[0]) / 2.0
# it is only a little difference to use GaussianNoise
# self.noise = OUNoise()
self._rew_norm = reward_normalization
self._n_step = estimation_step
def set_exp_noise(self, noise: Optional[BaseNoise]) -> None:
"""Set the exploration noise."""
self._noise = noise
def train(self, mode: bool = True) -> "DDPGPolicy":
"""Set the module in training mode, except for the target network."""
self.training = mode
self.actor.train(mode)
self.critic.train(mode)
return self
def sync_weight(self) -> None:
"""Soft-update the weight for the target network."""
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
o.data.copy_(o.data * (1.0 - self._tau) + n.data * self._tau)
for o, n in zip(self.critic_old.parameters(), self.critic.parameters()):
o.data.copy_(o.data * (1.0 - self._tau) + n.data * self._tau)
def _target_q(
self, buffer: ReplayBuffer, indice: np.ndarray
) -> torch.Tensor:
batch = buffer[indice] # batch.obs_next: s_{t+n}
target_q = self.critic_old(
batch.obs_next,
self(batch, model='actor_old', input='obs_next').act)
return target_q
def process_fn(
self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray
) -> Batch:
batch = self.compute_nstep_return(
batch, buffer, indice, self._target_q,
self._gamma, self._n_step, self._rew_norm)
return batch
def forward(
self,
batch: Batch,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
model: str = "actor",
input: str = "obs",
**kwargs: Any,
) -> Batch:
"""Compute action over the given batch data.
:return: A :class:`~tianshou.data.Batch` which has 2 keys:
* ``act`` the action.
* ``state`` the hidden state.
.. seealso::
Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for
more detailed explanation.
"""
model = getattr(self, model)
obs = batch[input]
actions, h = model(obs, state=state, info=batch.info)
actions += self._action_bias
actions = actions.clamp(self._range[0], self._range[1])
return Batch(act=actions, state=h)
@staticmethod
def _mse_optimizer(
batch: Batch, critic: torch.nn.Module, optimizer: torch.optim.Optimizer
) -> Tuple[torch.Tensor, torch.Tensor]:
"""A simple wrapper script for updating critic network."""
weight = getattr(batch, "weight", 1.0)
current_q = critic(batch.obs, batch.act).flatten()
target_q = batch.returns.flatten()
td = current_q - target_q
# critic_loss = F.mse_loss(current_q1, target_q)
critic_loss = (td.pow(2) * weight).mean()
optimizer.zero_grad()
critic_loss.backward()
optimizer.step()
return td, critic_loss
def learn(self, batch: Batch, **kwargs: Any) -> Dict[str, float]:
# critic
td, critic_loss = self._mse_optimizer(
batch, self.critic, self.critic_optim)
batch.weight = td # prio-buffer
# actor
action = self(batch).act
actor_loss = -self.critic(batch.obs, action).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
self.sync_weight()
return {
"loss/actor": actor_loss.item(),
"loss/critic": critic_loss.item(),
}
def exploration_noise(self, act: np.ndarray, batch: Batch) -> np.ndarray:
if self._noise:
act = act + self._noise(act.shape)
act = act.clip(self._range[0], self._range[1])
return act