Jiayi Weng c248b4f87e
fix conda support and keep API compatibility (#536)
* loose constrains

* fix nni issue (#478)

* fix coverage
2022-02-26 00:05:02 +08:00

198 lines
7.8 KiB
Python

from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from tianshou.data import Batch, ReplayBuffer
from tianshou.policy import BasePolicy
try:
from tianshou.env.pettingzoo_env import PettingZooEnv
except ImportError:
PettingZooEnv = None # type: ignore
class MultiAgentPolicyManager(BasePolicy):
"""Multi-agent policy manager for MARL.
This multi-agent policy manager accepts a list of
:class:`~tianshou.policy.BasePolicy`. It dispatches the batch data to each
of these policies when the "forward" is called. The same as "process_fn"
and "learn": it splits the data and feeds them to each policy. A figure in
:ref:`marl_example` can help you better understand this procedure.
"""
def __init__(
self, policies: List[BasePolicy], env: PettingZooEnv, **kwargs: Any
) -> None:
super().__init__(action_space=env.action_space, **kwargs)
assert (
len(policies) == len(env.agents)
), "One policy must be assigned for each agent."
self.agent_idx = env.agent_idx
for i, policy in enumerate(policies):
# agent_id 0 is reserved for the environment proxy
# (this MultiAgentPolicyManager)
policy.set_agent_id(env.agents[i])
self.policies = dict(zip(env.agents, policies))
def replace_policy(self, policy: BasePolicy, agent_id: int) -> None:
"""Replace the "agent_id"th policy in this manager."""
policy.set_agent_id(agent_id)
self.policies[agent_id] = policy
def process_fn(
self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray
) -> Batch:
"""Dispatch batch data from obs.agent_id to every policy's process_fn.
Save original multi-dimensional rew in "save_rew", set rew to the
reward of each agent during their "process_fn", and restore the
original reward afterwards.
"""
results = {}
# reward can be empty Batch (after initial reset) or nparray.
has_rew = isinstance(buffer.rew, np.ndarray)
if has_rew: # save the original reward in save_rew
# Since we do not override buffer.__setattr__, here we use _meta to
# change buffer.rew, otherwise buffer.rew = Batch() has no effect.
save_rew, buffer._meta.rew = buffer.rew, Batch()
for agent, policy in self.policies.items():
agent_index = np.nonzero(batch.obs.agent_id == agent)[0]
if len(agent_index) == 0:
results[agent] = Batch()
continue
tmp_batch, tmp_indice = batch[agent_index], indice[agent_index]
if has_rew:
tmp_batch.rew = tmp_batch.rew[:, self.agent_idx[agent]]
buffer._meta.rew = save_rew[:, self.agent_idx[agent]]
if not hasattr(tmp_batch.obs, "mask"):
if hasattr(tmp_batch.obs, 'obs'):
tmp_batch.obs = tmp_batch.obs.obs
if hasattr(tmp_batch.obs_next, 'obs'):
tmp_batch.obs_next = tmp_batch.obs_next.obs
results[agent] = policy.process_fn(tmp_batch, buffer, tmp_indice)
if has_rew: # restore from save_rew
buffer._meta.rew = save_rew
return Batch(results)
def exploration_noise(self, act: Union[np.ndarray, Batch],
batch: Batch) -> Union[np.ndarray, Batch]:
"""Add exploration noise from sub-policy onto act."""
for agent_id, policy in self.policies.items():
agent_index = np.nonzero(batch.obs.agent_id == agent_id)[0]
if len(agent_index) == 0:
continue
act[agent_index] = policy.exploration_noise(
act[agent_index], batch[agent_index]
)
return act
def forward( # type: ignore
self,
batch: Batch,
state: Optional[Union[dict, Batch]] = None,
**kwargs: Any,
) -> Batch:
"""Dispatch batch data from obs.agent_id to every policy's forward.
:param state: if None, it means all agents have no state. If not
None, it should contain keys of "agent_1", "agent_2", ...
:return: a Batch with the following contents:
::
{
"act": actions corresponding to the input
"state": {
"agent_1": output state of agent_1's policy for the state
"agent_2": xxx
...
"agent_n": xxx}
"out": {
"agent_1": output of agent_1's policy for the input
"agent_2": xxx
...
"agent_n": xxx}
}
"""
results: List[Tuple[bool, np.ndarray, Batch, Union[np.ndarray, Batch],
Batch]] = []
for agent_id, policy in self.policies.items():
# This part of code is difficult to understand.
# Let's follow an example with two agents
# batch.obs.agent_id is [1, 2, 1, 2, 1, 2] (with batch_size == 6)
# each agent plays for three transitions
# agent_index for agent 1 is [0, 2, 4]
# agent_index for agent 2 is [1, 3, 5]
# we separate the transition of each agent according to agent_id
agent_index = np.nonzero(batch.obs.agent_id == agent_id)[0]
if len(agent_index) == 0:
# (has_data, agent_index, out, act, state)
results.append((False, np.array([-1]), Batch(), Batch(), Batch()))
continue
tmp_batch = batch[agent_index]
if isinstance(tmp_batch.rew, np.ndarray):
# reward can be empty Batch (after initial reset) or nparray.
tmp_batch.rew = tmp_batch.rew[:, self.agent_idx[agent_id]]
if not hasattr(tmp_batch.obs, "mask"):
if hasattr(tmp_batch.obs, 'obs'):
tmp_batch.obs = tmp_batch.obs.obs
if hasattr(tmp_batch.obs_next, 'obs'):
tmp_batch.obs_next = tmp_batch.obs_next.obs
out = policy(
batch=tmp_batch,
state=None if state is None else state[agent_id],
**kwargs
)
act = out.act
each_state = out.state \
if (hasattr(out, "state") and out.state is not None) \
else Batch()
results.append((True, agent_index, out, act, each_state))
holder = Batch.cat(
[
{
"act": act
} for (has_data, agent_index, out, act, each_state) in results
if has_data
]
)
state_dict, out_dict = {}, {}
for (agent_id, _), (has_data, agent_index, out, act,
state) in zip(self.policies.items(), results):
if has_data:
holder.act[agent_index] = act
state_dict[agent_id] = state
out_dict[agent_id] = out
holder["out"] = out_dict
holder["state"] = state_dict
return holder
def learn(self, batch: Batch,
**kwargs: Any) -> Dict[str, Union[float, List[float]]]:
"""Dispatch the data to all policies for learning.
:return: a dict with the following contents:
::
{
"agent_1/item1": item 1 of agent_1's policy.learn output
"agent_1/item2": item 2 of agent_1's policy.learn output
"agent_2/xxx": xxx
...
"agent_n/xxx": xxx
}
"""
results = {}
for agent_id, policy in self.policies.items():
data = batch[agent_id]
if not data.is_empty():
out = policy.learn(batch=data, **kwargs)
for k, v in out.items():
results[agent_id + "/" + k] = v
return results