Tianshou/test/3rd_party/test_nni.py
Jiayi Weng c248b4f87e
fix conda support and keep API compatibility (#536)
* loose constrains

* fix nni issue (#478)

* fix coverage
2022-02-26 00:05:02 +08:00

127 lines
3.8 KiB
Python

# https://github.com/microsoft/nni/blob/master/test/ut/retiarii/test_strategy.py
import random
import threading
import time
from typing import List, Union
import nni.retiarii.execution.api
import nni.retiarii.nn.pytorch as nn
import nni.retiarii.strategy as strategy
import torch
import torch.nn.functional as F
from nni.retiarii import Model
from nni.retiarii.converter import convert_to_graph
from nni.retiarii.execution import wait_models
from nni.retiarii.execution.interface import (
AbstractExecutionEngine,
AbstractGraphListener,
MetricData,
WorkerInfo,
)
from nni.retiarii.graph import DebugEvaluator, ModelStatus
from nni.retiarii.nn.pytorch.mutator import process_inline_mutation
class MockExecutionEngine(AbstractExecutionEngine):
def __init__(self, failure_prob=0.):
self.models = []
self.failure_prob = failure_prob
self._resource_left = 4
def _model_complete(self, model: Model):
time.sleep(random.uniform(0, 1))
if random.uniform(0, 1) < self.failure_prob:
model.status = ModelStatus.Failed
else:
model.metric = random.uniform(0, 1)
model.status = ModelStatus.Trained
self._resource_left += 1
def submit_models(self, *models: Model) -> None:
for model in models:
self.models.append(model)
self._resource_left -= 1
threading.Thread(target=self._model_complete, args=(model, )).start()
def list_models(self) -> List[Model]:
return self.models
def query_available_resource(self) -> Union[List[WorkerInfo], int]:
return self._resource_left
def budget_exhausted(self) -> bool:
pass
def register_graph_listener(self, listener: AbstractGraphListener) -> None:
pass
def trial_execute_graph(cls) -> MetricData:
pass
def _reset_execution_engine(engine=None):
nni.retiarii.execution.api._execution_engine = engine
class Net(nn.Module):
def __init__(self, hidden_size=32, diff_size=False):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.LayerChoice(
[
nn.Linear(4 * 4 * 50, hidden_size, bias=True),
nn.Linear(4 * 4 * 50, hidden_size, bias=False)
],
label='fc1'
)
self.fc2 = nn.LayerChoice(
[
nn.Linear(hidden_size, 10, bias=False),
nn.Linear(hidden_size, 10, bias=True)
] + ([] if not diff_size else [nn.Linear(hidden_size, 10, bias=False)]),
label='fc2'
)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4 * 4 * 50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def _get_model_and_mutators(**kwargs):
base_model = Net(**kwargs)
script_module = torch.jit.script(base_model)
base_model_ir = convert_to_graph(script_module, base_model)
base_model_ir.evaluator = DebugEvaluator()
mutators = process_inline_mutation(base_model_ir)
return base_model_ir, mutators
def test_rl():
rl = strategy.PolicyBasedRL(max_collect=2, trial_per_collect=10)
engine = MockExecutionEngine(failure_prob=0.2)
_reset_execution_engine(engine)
rl.run(*_get_model_and_mutators(diff_size=True))
wait_models(*engine.models)
_reset_execution_engine()
rl = strategy.PolicyBasedRL(max_collect=2, trial_per_collect=10)
engine = MockExecutionEngine(failure_prob=0.2)
_reset_execution_engine(engine)
rl.run(*_get_model_and_mutators())
wait_models(*engine.models)
_reset_execution_engine()
if __name__ == '__main__':
test_rl()