64 lines
1.8 KiB
Python
64 lines
1.8 KiB
Python
import sys
|
|
import time
|
|
|
|
import gym
|
|
import numpy as np
|
|
import tqdm
|
|
|
|
from tianshou.data import Batch, ReplayBuffer, VectorReplayBuffer
|
|
|
|
|
|
def test_replaybuffer(task="Pendulum-v1"):
|
|
total_count = 5
|
|
for _ in tqdm.trange(total_count, desc="ReplayBuffer"):
|
|
env = gym.make(task)
|
|
buf = ReplayBuffer(10000)
|
|
obs = env.reset()
|
|
for _ in range(100000):
|
|
act = env.action_space.sample()
|
|
obs_next, rew, done, info = env.step(act)
|
|
batch = Batch(
|
|
obs=np.array([obs]),
|
|
act=np.array([act]),
|
|
rew=np.array([rew]),
|
|
done=np.array([done]),
|
|
obs_next=np.array([obs_next]),
|
|
info=np.array([info]),
|
|
)
|
|
buf.add(batch, buffer_ids=[0])
|
|
obs = obs_next
|
|
if done:
|
|
obs = env.reset()
|
|
|
|
|
|
def test_vectorbuffer(task="Pendulum-v1"):
|
|
total_count = 5
|
|
for _ in tqdm.trange(total_count, desc="VectorReplayBuffer"):
|
|
env = gym.make(task)
|
|
buf = VectorReplayBuffer(total_size=10000, buffer_num=1)
|
|
obs = env.reset()
|
|
for _ in range(100000):
|
|
act = env.action_space.sample()
|
|
obs_next, rew, done, info = env.step(act)
|
|
batch = Batch(
|
|
obs=np.array([obs]),
|
|
act=np.array([act]),
|
|
rew=np.array([rew]),
|
|
done=np.array([done]),
|
|
obs_next=np.array([obs_next]),
|
|
info=np.array([info]),
|
|
)
|
|
buf.add(batch)
|
|
obs = obs_next
|
|
if done:
|
|
obs = env.reset()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
t0 = time.time()
|
|
test_replaybuffer(sys.argv[-1])
|
|
print("test replaybuffer: ", time.time() - t0)
|
|
t0 = time.time()
|
|
test_vectorbuffer(sys.argv[-1])
|
|
print("test vectorbuffer: ", time.time() - t0)
|