Tianshou/tianshou/highlevel/params/lr_scheduler.py
2023-10-18 20:44:17 +02:00

27 lines
887 B
Python

from abc import ABC, abstractmethod
import numpy as np
import torch
from torch.optim.lr_scheduler import LambdaLR, LRScheduler
from tianshou.highlevel.config import SamplingConfig
from tianshou.utils.string import ToStringMixin
class LRSchedulerFactory(ToStringMixin, ABC):
@abstractmethod
def create_scheduler(self, optim: torch.optim.Optimizer) -> LRScheduler:
pass
class LRSchedulerFactoryLinear(LRSchedulerFactory):
def __init__(self, sampling_config: SamplingConfig):
self.sampling_config = sampling_config
def create_scheduler(self, optim: torch.optim.Optimizer) -> LRScheduler:
max_update_num = (
np.ceil(self.sampling_config.step_per_epoch / self.sampling_config.step_per_collect)
* self.sampling_config.num_epochs
)
return LambdaLR(optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)