A test is not a script and should not be used as such Also marked pistonball test as skipped since it doesn't actually test anything
166 lines
6.4 KiB
Python
166 lines
6.4 KiB
Python
import argparse
|
|
import os
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import REDQPolicy
|
|
from tianshou.policy.base import BasePolicy
|
|
from tianshou.trainer import OffpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import EnsembleLinear, Net
|
|
from tianshou.utils.net.continuous import ActorProb, Critic
|
|
from tianshou.utils.space_info import SpaceInfo
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="Pendulum-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=0)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--ensemble-size", type=int, default=4)
|
|
parser.add_argument("--subset-size", type=int, default=2)
|
|
parser.add_argument("--actor-lr", type=float, default=1e-4)
|
|
parser.add_argument("--critic-lr", type=float, default=1e-3)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--tau", type=float, default=0.005)
|
|
parser.add_argument("--alpha", type=float, default=0.2)
|
|
parser.add_argument("--auto-alpha", action="store_true", default=False)
|
|
parser.add_argument("--alpha-lr", type=float, default=3e-4)
|
|
parser.add_argument("--start-timesteps", type=int, default=1000)
|
|
parser.add_argument("--epoch", type=int, default=5)
|
|
parser.add_argument("--step-per-epoch", type=int, default=5000)
|
|
parser.add_argument("--step-per-collect", type=int, default=1)
|
|
parser.add_argument("--update-per-step", type=int, default=3)
|
|
parser.add_argument("--n-step", type=int, default=1)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
parser.add_argument("--target-mode", type=str, choices=("min", "mean"), default="min")
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--training-num", type=int, default=8)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_redq(args: argparse.Namespace = get_args()) -> None:
|
|
env = gym.make(args.task)
|
|
assert isinstance(env.action_space, gym.spaces.Box)
|
|
space_info = SpaceInfo.from_env(env)
|
|
args.state_shape = space_info.observation_info.obs_shape
|
|
args.action_shape = space_info.action_info.action_shape
|
|
args.max_action = space_info.action_info.max_action
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
|
|
args.reward_threshold = default_reward_threshold.get(
|
|
args.task,
|
|
env.spec.reward_threshold if env.spec else None,
|
|
)
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
|
# train_envs = gym.make(args.task)
|
|
train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)])
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = ActorProb(
|
|
net,
|
|
args.action_shape,
|
|
device=args.device,
|
|
unbounded=True,
|
|
conditioned_sigma=True,
|
|
).to(args.device)
|
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
|
|
|
def linear(x: int, y: int) -> nn.Module:
|
|
return EnsembleLinear(args.ensemble_size, x, y)
|
|
|
|
net_c = Net(
|
|
state_shape=args.state_shape,
|
|
action_shape=args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device,
|
|
linear_layer=linear,
|
|
)
|
|
critic = Critic(net_c, device=args.device, linear_layer=linear, flatten_input=False).to(
|
|
args.device,
|
|
)
|
|
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
|
|
|
|
action_dim = space_info.action_info.action_dim
|
|
if args.auto_alpha:
|
|
target_entropy = -action_dim
|
|
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
|
|
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
|
|
args.alpha = (target_entropy, log_alpha, alpha_optim)
|
|
|
|
policy: REDQPolicy = REDQPolicy(
|
|
actor=actor,
|
|
actor_optim=actor_optim,
|
|
critic=critic,
|
|
critic_optim=critic_optim,
|
|
ensemble_size=args.ensemble_size,
|
|
subset_size=args.subset_size,
|
|
tau=args.tau,
|
|
gamma=args.gamma,
|
|
alpha=args.alpha,
|
|
estimation_step=args.n_step,
|
|
actor_delay=args.update_per_step,
|
|
target_mode=args.target_mode,
|
|
action_space=env.action_space,
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
exploration_noise=True,
|
|
)
|
|
test_collector = Collector(policy, test_envs)
|
|
train_collector.reset()
|
|
train_collector.collect(n_step=args.start_timesteps, random=True)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, "redq")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy: BasePolicy) -> None:
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
# trainer
|
|
result = OffpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
update_per_step=args.update_per_step,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
assert stop_fn(result.best_reward)
|