A test is not a script and should not be used as such Also marked pistonball test as skipped since it doesn't actually test anything
204 lines
7.4 KiB
Python
204 lines
7.4 KiB
Python
import argparse
|
|
import datetime
|
|
import os
|
|
import pickle
|
|
import pprint
|
|
from test.offline.gather_pendulum_data import expert_file_name, gather_data
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import BasePolicy, CQLPolicy
|
|
from tianshou.policy.imitation.cql import CQLTrainingStats
|
|
from tianshou.trainer import OfflineTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import Net
|
|
from tianshou.utils.net.continuous import ActorProb, Critic
|
|
from tianshou.utils.space_info import SpaceInfo
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="Pendulum-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--actor-lr", type=float, default=1e-3)
|
|
parser.add_argument("--critic-lr", type=float, default=1e-3)
|
|
parser.add_argument("--alpha", type=float, default=0.2)
|
|
parser.add_argument("--auto-alpha", default=True, action="store_true")
|
|
parser.add_argument("--alpha-lr", type=float, default=1e-3)
|
|
parser.add_argument("--cql-alpha-lr", type=float, default=1e-3)
|
|
parser.add_argument("--start-timesteps", type=int, default=10000)
|
|
parser.add_argument("--epoch", type=int, default=5)
|
|
parser.add_argument("--step-per-epoch", type=int, default=500)
|
|
parser.add_argument("--n-step", type=int, default=3)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
|
|
parser.add_argument("--tau", type=float, default=0.005)
|
|
parser.add_argument("--temperature", type=float, default=1.0)
|
|
parser.add_argument("--cql-weight", type=float, default=1.0)
|
|
parser.add_argument("--with-lagrange", type=bool, default=True)
|
|
parser.add_argument("--lagrange-threshold", type=float, default=10.0)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
|
|
parser.add_argument("--eval-freq", type=int, default=1)
|
|
parser.add_argument("--test-num", type=int, default=10)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=1 / 35)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
parser.add_argument("--resume-path", type=str, default=None)
|
|
parser.add_argument(
|
|
"--watch",
|
|
default=False,
|
|
action="store_true",
|
|
help="watch the play of pre-trained policy only",
|
|
)
|
|
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_cql(args: argparse.Namespace = get_args()) -> None:
|
|
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
|
|
if args.load_buffer_name.endswith(".hdf5"):
|
|
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
|
|
else:
|
|
with open(args.load_buffer_name, "rb") as f:
|
|
buffer = pickle.load(f)
|
|
else:
|
|
buffer = gather_data()
|
|
env = gym.make(args.task)
|
|
assert isinstance(env.action_space, gym.spaces.Box)
|
|
|
|
space_info = SpaceInfo.from_env(env)
|
|
|
|
args.state_shape = space_info.observation_info.obs_shape
|
|
args.action_shape = space_info.action_info.action_shape
|
|
args.min_action = space_info.action_info.min_action
|
|
args.max_action = space_info.action_info.max_action
|
|
args.state_dim = space_info.observation_info.obs_dim
|
|
args.action_dim = space_info.action_info.action_dim
|
|
|
|
if args.reward_threshold is None:
|
|
# too low?
|
|
default_reward_threshold = {"Pendulum-v0": -1200, "Pendulum-v1": -1200}
|
|
args.reward_threshold = default_reward_threshold.get(
|
|
args.task,
|
|
env.spec.reward_threshold if env.spec else None,
|
|
)
|
|
|
|
# test_envs = gym.make(args.task)
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
|
|
# model
|
|
# actor network
|
|
net_a = Net(
|
|
state_shape=args.state_shape,
|
|
action_shape=args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
device=args.device,
|
|
)
|
|
actor = ActorProb(
|
|
net_a,
|
|
action_shape=args.action_shape,
|
|
device=args.device,
|
|
unbounded=True,
|
|
conditioned_sigma=True,
|
|
).to(args.device)
|
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
|
|
|
# critic network
|
|
net_c = Net(
|
|
state_shape=args.state_shape,
|
|
action_shape=args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
concat=True,
|
|
device=args.device,
|
|
)
|
|
critic = Critic(net_c, device=args.device).to(args.device)
|
|
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
|
|
|
|
if args.auto_alpha:
|
|
target_entropy = -np.prod(args.action_shape)
|
|
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
|
|
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
|
|
args.alpha = (target_entropy, log_alpha, alpha_optim)
|
|
|
|
policy: CQLPolicy[CQLTrainingStats] = CQLPolicy(
|
|
actor=actor,
|
|
actor_optim=actor_optim,
|
|
critic=critic,
|
|
critic_optim=critic_optim,
|
|
# CQL seems to perform better without action scaling
|
|
# TODO: investigate why
|
|
action_scaling=False,
|
|
action_space=env.action_space,
|
|
cql_alpha_lr=args.cql_alpha_lr,
|
|
cql_weight=args.cql_weight,
|
|
tau=args.tau,
|
|
gamma=args.gamma,
|
|
alpha=args.alpha,
|
|
temperature=args.temperature,
|
|
with_lagrange=args.with_lagrange,
|
|
lagrange_threshold=args.lagrange_threshold,
|
|
min_action=args.min_action,
|
|
max_action=args.max_action,
|
|
device=args.device,
|
|
)
|
|
|
|
# load a previous policy
|
|
if args.resume_path:
|
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
|
print("Loaded agent from: ", args.resume_path)
|
|
|
|
# collector
|
|
# buffer has been gathered
|
|
# train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
|
|
test_collector = Collector(policy, test_envs)
|
|
# log
|
|
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
|
|
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_cql'
|
|
log_path = os.path.join(args.logdir, args.task, "cql", log_file)
|
|
writer = SummaryWriter(log_path)
|
|
writer.add_text("args", str(args))
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy: BasePolicy) -> None:
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
# trainer
|
|
trainer = OfflineTrainer(
|
|
policy=policy,
|
|
buffer=buffer,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
save_best_fn=save_best_fn,
|
|
stop_fn=stop_fn,
|
|
logger=logger,
|
|
)
|
|
|
|
for epoch_stat in trainer:
|
|
print(f"Epoch: {epoch_stat.epoch}")
|
|
pprint.pprint(epoch_stat)
|
|
# print(info)
|
|
|
|
assert stop_fn(epoch_stat.info_stat.best_reward)
|