A test is not a script and should not be used as such Also marked pistonball test as skipped since it doesn't actually test anything
168 lines
6.4 KiB
Python
168 lines
6.4 KiB
Python
import argparse
|
|
import os
|
|
import pickle
|
|
from test.offline.gather_cartpole_data import expert_file_name, gather_data
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.policy import BasePolicy, DiscreteBCQPolicy
|
|
from tianshou.trainer import OfflineTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import ActorCritic, Net
|
|
from tianshou.utils.net.discrete import Actor
|
|
from tianshou.utils.space_info import SpaceInfo
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="CartPole-v1")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1626)
|
|
parser.add_argument("--eps-test", type=float, default=0.001)
|
|
parser.add_argument("--lr", type=float, default=3e-4)
|
|
parser.add_argument("--gamma", type=float, default=0.99)
|
|
parser.add_argument("--n-step", type=int, default=3)
|
|
parser.add_argument("--target-update-freq", type=int, default=320)
|
|
parser.add_argument("--unlikely-action-threshold", type=float, default=0.6)
|
|
parser.add_argument("--imitation-logits-penalty", type=float, default=0.01)
|
|
parser.add_argument("--epoch", type=int, default=5)
|
|
parser.add_argument("--update-per-epoch", type=int, default=2000)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
parser.add_argument("--resume", action="store_true")
|
|
parser.add_argument("--save-interval", type=int, default=4)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def test_discrete_bcq(args: argparse.Namespace = get_args()) -> None:
|
|
# envs
|
|
env = gym.make(args.task)
|
|
assert isinstance(env.action_space, gym.spaces.Discrete)
|
|
space_info = SpaceInfo.from_env(env)
|
|
args.state_shape = space_info.observation_info.obs_shape
|
|
args.action_shape = space_info.action_info.action_shape
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"CartPole-v1": 185}
|
|
args.reward_threshold = default_reward_threshold.get(
|
|
args.task,
|
|
env.spec.reward_threshold if env.spec else None,
|
|
)
|
|
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
# model
|
|
net = Net(state_shape=args.state_shape, action_shape=args.hidden_sizes[0], device=args.device)
|
|
policy_net = Actor(
|
|
net,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
device=args.device,
|
|
).to(args.device)
|
|
imitation_net = Actor(
|
|
net,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
device=args.device,
|
|
).to(args.device)
|
|
actor_critic = ActorCritic(policy_net, imitation_net)
|
|
optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr)
|
|
|
|
policy: DiscreteBCQPolicy = DiscreteBCQPolicy(
|
|
model=policy_net,
|
|
imitator=imitation_net,
|
|
optim=optim,
|
|
action_space=env.action_space,
|
|
discount_factor=args.gamma,
|
|
estimation_step=args.n_step,
|
|
target_update_freq=args.target_update_freq,
|
|
eval_eps=args.eps_test,
|
|
unlikely_action_threshold=args.unlikely_action_threshold,
|
|
imitation_logits_penalty=args.imitation_logits_penalty,
|
|
)
|
|
# buffer
|
|
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
|
|
if args.load_buffer_name.endswith(".hdf5"):
|
|
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
|
|
else:
|
|
with open(args.load_buffer_name, "rb") as f:
|
|
buffer = pickle.load(f)
|
|
else:
|
|
buffer = gather_data()
|
|
|
|
# collector
|
|
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
|
|
|
log_path = os.path.join(args.logdir, args.task, "discrete_bcq")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer, save_interval=args.save_interval)
|
|
|
|
def save_best_fn(policy: BasePolicy) -> None:
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards: float) -> bool:
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
def save_checkpoint_fn(epoch: int, env_step: int, gradient_step: int) -> str:
|
|
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
|
|
ckpt_path = os.path.join(log_path, "checkpoint.pth")
|
|
# Example: saving by epoch num
|
|
# ckpt_path = os.path.join(log_path, f"checkpoint_{epoch}.pth")
|
|
torch.save(
|
|
{
|
|
"model": policy.state_dict(),
|
|
"optim": optim.state_dict(),
|
|
},
|
|
ckpt_path,
|
|
)
|
|
return ckpt_path
|
|
|
|
if args.resume:
|
|
# load from existing checkpoint
|
|
print(f"Loading agent under {log_path}")
|
|
ckpt_path = os.path.join(log_path, "checkpoint.pth")
|
|
if os.path.exists(ckpt_path):
|
|
checkpoint = torch.load(ckpt_path, map_location=args.device)
|
|
policy.load_state_dict(checkpoint["model"])
|
|
optim.load_state_dict(checkpoint["optim"])
|
|
print("Successfully restore policy and optim.")
|
|
else:
|
|
print("Fail to restore policy and optim.")
|
|
|
|
result = OfflineTrainer(
|
|
policy=policy,
|
|
buffer=buffer,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.update_per_epoch,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
resume_from_log=args.resume,
|
|
save_checkpoint_fn=save_checkpoint_fn,
|
|
).run()
|
|
assert stop_fn(result.best_reward)
|
|
|
|
|
|
def test_discrete_bcq_resume(args: argparse.Namespace = get_args()) -> None:
|
|
test_discrete_bcq()
|
|
args.resume = True
|
|
test_discrete_bcq(args)
|