Tianshou/test/offline/test_td3_bc.py
Michael Panchenko 12d4262f80 Tests: removed all instances of if __name__ == ... in tests
A test is not a script and should not be used as such

Also marked pistonball test as skipped since it doesn't actually test anything
2024-04-26 17:39:30 +02:00

191 lines
6.9 KiB
Python

import argparse
import datetime
import os
import pickle
from test.offline.gather_pendulum_data import expert_file_name, gather_data
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.exploration import GaussianNoise
from tianshou.policy import TD3BCPolicy
from tianshou.policy.base import BasePolicy
from tianshou.trainer import OfflineTrainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import Actor, Critic
from tianshou.utils.space_info import SpaceInfo
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="Pendulum-v1")
parser.add_argument("--reward-threshold", type=float, default=None)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--actor-lr", type=float, default=1e-3)
parser.add_argument("--critic-lr", type=float, default=1e-3)
parser.add_argument("--epoch", type=int, default=5)
parser.add_argument("--step-per-epoch", type=int, default=500)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--alpha", type=float, default=2.5)
parser.add_argument("--exploration-noise", type=float, default=0.1)
parser.add_argument("--policy-noise", type=float, default=0.2)
parser.add_argument("--noise-clip", type=float, default=0.5)
parser.add_argument("--update-actor-freq", type=int, default=2)
parser.add_argument("--tau", type=float, default=0.005)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--eval-freq", type=int, default=1)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=1 / 35)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
parser.add_argument("--load-buffer-name", type=str, default=expert_file_name())
return parser.parse_known_args()[0]
def test_td3_bc(args: argparse.Namespace = get_args()) -> None:
if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name):
if args.load_buffer_name.endswith(".hdf5"):
buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name)
else:
with open(args.load_buffer_name, "rb") as f:
buffer = pickle.load(f)
else:
buffer = gather_data()
env = gym.make(args.task)
space_info = SpaceInfo.from_env(env)
args.state_shape = space_info.observation_info.obs_shape
args.action_shape = space_info.action_info.action_shape
args.max_action = space_info.action_info.max_action
if args.reward_threshold is None:
# too low?
default_reward_threshold = {"Pendulum-v0": -1200, "Pendulum-v1": -1200}
args.reward_threshold = default_reward_threshold.get(
args.task,
env.spec.reward_threshold if env.spec else None,
)
args.state_dim = space_info.action_info.action_dim
args.action_dim = space_info.observation_info.obs_dim
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
test_envs.seed(args.seed)
# model
# actor network
net_a = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
)
actor = Actor(
net_a,
action_shape=args.action_shape,
max_action=args.max_action,
device=args.device,
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
# critic network
net_c1 = Net(
state_shape=args.state_shape,
action_shape=args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
net_c2 = Net(
state_shape=args.state_shape,
action_shape=args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
)
critic1 = Critic(net_c1, device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(net_c2, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy: TD3BCPolicy = TD3BCPolicy(
actor=actor,
actor_optim=actor_optim,
critic=critic1,
critic_optim=critic1_optim,
critic2=critic2,
critic2_optim=critic2_optim,
tau=args.tau,
gamma=args.gamma,
exploration_noise=GaussianNoise(sigma=args.exploration_noise),
policy_noise=args.policy_noise,
update_actor_freq=args.update_actor_freq,
noise_clip=args.noise_clip,
alpha=args.alpha,
estimation_step=args.n_step,
action_space=env.action_space,
)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# collector
# buffer has been gathered
# train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
# log
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_td3_bc'
log_path = os.path.join(args.logdir, args.task, "td3_bc", log_file)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards: float) -> bool:
return mean_rewards >= args.reward_threshold
# trainer
trainer = OfflineTrainer(
policy=policy,
buffer=buffer,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
episode_per_test=args.test_num,
batch_size=args.batch_size,
save_best_fn=save_best_fn,
stop_fn=stop_fn,
logger=logger,
)
for epoch_stat in trainer:
print(f"Epoch: {epoch_stat.epoch}")
print(epoch_stat)
# print(info)
assert stop_fn(epoch_stat.info_stat.best_reward)