Tianshou/test/discrete/test_dqn.py
n+e 140b1c2cab
Improve PER (#159)
- use segment tree to rewrite the previous PrioReplayBuffer code, add the test

- enable all Q-learning algorithms to use PER
2020-08-06 10:26:24 +08:00

133 lines
4.8 KiB
Python

import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.env import VectorEnv
from tianshou.policy import DQNPolicy
from tianshou.utils.net.common import Net
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer, PrioritizedReplayBuffer
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--n-step', type=int, default=3)
parser.add_argument('--target-update-freq', type=int, default=320)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--step-per-epoch', type=int, default=1000)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--layer-num', type=int, default=3)
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--prioritized-replay', type=int, default=0)
parser.add_argument('--alpha', type=float, default=0.6)
parser.add_argument('--beta', type=float, default=0.4)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_dqn(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = VectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape,
args.action_shape, args.device, # dueling=(1, 1)
).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = DQNPolicy(
net, optim, args.gamma, args.n_step,
target_update_freq=args.target_update_freq)
# buffer
if args.prioritized_replay > 0:
buf = PrioritizedReplayBuffer(
args.buffer_size, alpha=args.alpha, beta=args.beta)
else:
buf = ReplayBuffer(args.buffer_size)
# collector
train_collector = Collector(policy, train_envs, buf)
test_collector = Collector(policy, test_envs)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size)
# log
log_path = os.path.join(args.logdir, args.task, 'dqn')
writer = SummaryWriter(log_path)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(x):
return x >= env.spec.reward_threshold
def train_fn(x):
# eps annnealing, just a demo
if x <= int(0.1 * args.epoch):
policy.set_eps(args.eps_train)
elif x <= int(0.5 * args.epoch):
eps = args.eps_train - (x - 0.1 * args.epoch) / \
(0.4 * args.epoch) * (0.9 * args.eps_train)
policy.set_eps(eps)
else:
policy.set_eps(0.1 * args.eps_train)
def test_fn(x):
policy.set_eps(args.eps_test)
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, train_fn=train_fn, test_fn=test_fn,
stop_fn=stop_fn, save_fn=save_fn, writer=writer)
assert stop_fn(result['best_reward'])
train_collector.close()
test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
def test_pdqn(args=get_args()):
args.prioritized_replay = 1
args.gamma = .95
test_dqn(args)
if __name__ == '__main__':
test_dqn(get_args())