n+e 140b1c2cab
Improve PER (#159)
- use segment tree to rewrite the previous PrioReplayBuffer code, add the test

- enable all Q-learning algorithms to use PER
2020-08-06 10:26:24 +08:00

134 lines
4.5 KiB
Python

import numpy as np
from typing import Union, Optional
# from numba import njit
# numba version, 5x speed up
# with size=100000 and bsz=64
# first block (vectorized np): 0.0923 (now) -> 0.0251
# second block (for-loop): 0.2914 -> 0.0192 (future)
# @njit
def _get_prefix_sum_idx(value, bound, sums):
index = np.ones(value.shape, dtype=np.int64)
while index[0] < bound:
index *= 2
direct = sums[index] < value
value -= sums[index] * direct
index += direct
# for _, s in enumerate(value):
# i = 1
# while i < bound:
# l = i * 2
# if sums[l] >= s:
# i = l
# else:
# s = s - sums[l]
# i = l + 1
# index[_] = i
index -= bound
return index
class SegmentTree:
"""Implementation of Segment Tree: store an array ``arr`` with size ``n``
in a segment tree, support value update and fast query of ``min/max/sum``
for the interval ``[left, right)`` in O(log n) time.
The detailed procedure is as follows:
1. Pad the array to have length of power of 2, so that leaf nodes in the\
segment tree have the same depth.
2. Store the segment tree in a binary heap.
:param int size: the size of segment tree.
:param str operation: the operation of segment tree. Choices are "sum",
"min" and "max". Default: "sum".
"""
def __init__(self, size: int,
operation: str = 'sum') -> None:
bound = 1
while bound < size:
bound *= 2
self._size = size
self._bound = bound
assert operation in ['sum', 'min', 'max'], \
f'Unknown operation {operation}.'
if operation == 'sum':
self._op, self._init_value = np.add, 0.
elif operation == 'min':
self._op, self._init_value = np.minimum, np.inf
else:
self._op, self._init_value = np.maximum, -np.inf
# assert isinstance(self._op, np.ufunc)
self._value = np.full([bound * 2], self._init_value)
def __len__(self):
return self._size
def __getitem__(self, index: Union[int, np.ndarray]
) -> Union[float, np.ndarray]:
"""Return self[index]"""
return self._value[index + self._bound]
def __setitem__(self, index: Union[int, np.ndarray],
value: Union[float, np.ndarray]) -> None:
"""Duplicate values in ``index`` are handled by numpy: later index
overwrites previous ones.
::
>>> a = np.array([1, 2, 3, 4])
>>> a[[0, 1, 0, 1]] = [4, 5, 6, 7]
>>> print(a)
[6 7 3 4]
"""
# TODO numba njit version
if isinstance(index, int):
index = np.array([index])
assert np.all(0 <= index) and np.all(index < self._size)
if self._op is np.add:
assert np.all(0. <= value)
index = index + self._bound
self._value[index] = value
while index[0] > 1:
index //= 2
self._value[index] = self._op(
self._value[index * 2], self._value[index * 2 + 1])
def reduce(self, start: Optional[int] = 0,
end: Optional[int] = None) -> float:
"""Return operation(value[start:end])."""
# TODO numba njit version
if start == 0 and end is None:
return self._value[1]
if end is None:
end = self._size
if end < 0:
end += self._size
# nodes in (start, end) should be aggregated
start, end = start + self._bound - 1, end + self._bound
result = self._init_value
while end - start > 1: # (start, end) interval is not empty
if start % 2 == 0:
result = self._op(result, self._value[start + 1])
if end % 2 == 1:
result = self._op(result, self._value[end - 1])
start, end = start // 2, end // 2
return result
def get_prefix_sum_idx(
self, value: Union[float, np.ndarray]) -> Union[int, np.ndarray]:
"""Return the minimum index for each ``v`` in ``value`` so that
``v <= sums[i]``, where sums[i] = \\sum_{j=0}^{i} arr[j].
"""
assert self._op is np.add
assert np.all(value >= 0.) and np.all(value < self._value[1])
single = False
if not isinstance(value, np.ndarray):
value = np.array([value])
single = True
index = _get_prefix_sum_idx(value, self._bound, self._value)
return index.item() if single else index