Tianshou/examples/mujoco/mujoco_a2c.py
ChenDRAG 1423eeb3b2
Add warnings for duplicate usage of action-bounded actor and action scaling method (#850)
- Fix the current bug discussed in #844 in `test_ppo.py`.
- Add warning for `ActorProb ` if both `max_action ` and
`unbounded=True` are used for model initializations.
- Add warning for PGpolicy and DDPGpolicy if they find duplicate usage
of action-bounded actor and action scaling method.
2023-04-23 16:03:31 -07:00

226 lines
7.8 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import datetime
import os
import pprint
import numpy as np
import torch
from mujoco_env import make_mujoco_env
from torch import nn
from torch.distributions import Independent, Normal
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
from tianshou.policy import A2CPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils import TensorboardLogger, WandbLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="Ant-v3")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--buffer-size", type=int, default=4096)
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
parser.add_argument("--lr", type=float, default=7e-4)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--epoch", type=int, default=100)
parser.add_argument("--step-per-epoch", type=int, default=30000)
parser.add_argument("--step-per-collect", type=int, default=80)
parser.add_argument("--repeat-per-collect", type=int, default=1)
# batch-size >> step-per-collect means calculating all data in one singe forward.
parser.add_argument("--batch-size", type=int, default=99999)
parser.add_argument("--training-num", type=int, default=16)
parser.add_argument("--test-num", type=int, default=10)
# a2c special
parser.add_argument("--rew-norm", type=int, default=True)
parser.add_argument("--vf-coef", type=float, default=0.5)
parser.add_argument("--ent-coef", type=float, default=0.01)
parser.add_argument("--gae-lambda", type=float, default=0.95)
parser.add_argument("--bound-action-method", type=str, default="clip")
parser.add_argument("--lr-decay", type=int, default=True)
parser.add_argument("--max-grad-norm", type=float, default=0.5)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.)
parser.add_argument(
"--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu"
)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="mujoco.benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
return parser.parse_args()
def test_a2c(args=get_args()):
env, train_envs, test_envs = make_mujoco_env(
args.task, args.seed, args.training_num, args.test_num, obs_norm=True
)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# model
net_a = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
activation=nn.Tanh,
device=args.device,
)
actor = ActorProb(
net_a,
args.action_shape,
unbounded=True,
device=args.device,
).to(args.device)
net_c = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
activation=nn.Tanh,
device=args.device,
)
critic = Critic(net_c, device=args.device).to(args.device)
torch.nn.init.constant_(actor.sigma_param, -0.5)
for m in list(actor.modules()) + list(critic.modules()):
if isinstance(m, torch.nn.Linear):
# orthogonal initialization
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
torch.nn.init.zeros_(m.bias)
# do last policy layer scaling, this will make initial actions have (close to)
# 0 mean and std, and will help boost performances,
# see https://arxiv.org/abs/2006.05990, Fig.24 for details
for m in actor.mu.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.zeros_(m.bias)
m.weight.data.copy_(0.01 * m.weight.data)
optim = torch.optim.RMSprop(
list(actor.parameters()) + list(critic.parameters()),
lr=args.lr,
eps=1e-5,
alpha=0.99,
)
lr_scheduler = None
if args.lr_decay:
# decay learning rate to 0 linearly
max_update_num = np.ceil(
args.step_per_epoch / args.step_per_collect
) * args.epoch
lr_scheduler = LambdaLR(
optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num
)
def dist(*logits):
return Independent(Normal(*logits), 1)
policy = A2CPolicy(
actor,
critic,
optim,
dist,
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
max_grad_norm=args.max_grad_norm,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
reward_normalization=args.rew_norm,
action_scaling=True,
action_bound_method=args.bound_action_method,
lr_scheduler=lr_scheduler,
action_space=env.action_space,
)
# load a previous policy
if args.resume_path:
ckpt = torch.load(args.resume_path, map_location=args.device)
policy.load_state_dict(ckpt["model"])
train_envs.set_obs_rms(ckpt["obs_rms"])
test_envs.set_obs_rms(ckpt["obs_rms"])
print("Loaded agent from: ", args.resume_path)
# collector
if args.training_num > 1:
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
else:
buffer = ReplayBuffer(args.buffer_size)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "a2c"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
if args.logger == "wandb":
logger = WandbLogger(
save_interval=1,
name=log_name.replace(os.path.sep, "__"),
run_id=args.resume_id,
config=args,
project=args.wandb_project,
)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
if args.logger == "tensorboard":
logger = TensorboardLogger(writer)
else: # wandb
logger.load(writer)
def save_best_fn(policy):
state = {"model": policy.state_dict(), "obs_rms": train_envs.get_obs_rms()}
torch.save(state, os.path.join(log_path, "policy.pth"))
if not args.watch:
# trainer
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.repeat_per_collect,
args.test_num,
args.batch_size,
step_per_collect=args.step_per_collect,
save_best_fn=save_best_fn,
logger=logger,
test_in_train=False,
)
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
if __name__ == "__main__":
test_a2c()