ChenDRAG 1423eeb3b2
Add warnings for duplicate usage of action-bounded actor and action scaling method (#850)
- Fix the current bug discussed in #844 in `test_ppo.py`.
- Add warning for `ActorProb ` if both `max_action ` and
`unbounded=True` are used for model initializations.
- Add warning for PGpolicy and DDPGpolicy if they find duplicate usage
of action-bounded actor and action scaling method.
2023-04-23 16:03:31 -07:00

197 lines
7.9 KiB
Python

import warnings
from copy import deepcopy
from typing import Any, Dict, Optional, Tuple, Union
import numpy as np
import torch
from tianshou.data import Batch, ReplayBuffer
from tianshou.exploration import BaseNoise, GaussianNoise
from tianshou.policy import BasePolicy
class DDPGPolicy(BasePolicy):
"""Implementation of Deep Deterministic Policy Gradient. arXiv:1509.02971.
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
:param torch.nn.Module critic: the critic network. (s, a -> Q(s, a))
:param torch.optim.Optimizer critic_optim: the optimizer for critic network.
:param float tau: param for soft update of the target network. Default to 0.005.
:param float gamma: discount factor, in [0, 1]. Default to 0.99.
:param BaseNoise exploration_noise: the exploration noise,
add to the action. Default to ``GaussianNoise(sigma=0.1)``.
:param bool reward_normalization: normalize the reward to Normal(0, 1),
Default to False.
:param int estimation_step: the number of steps to look ahead. Default to 1.
:param bool action_scaling: whether to map actions from range [-1, 1] to range
[action_spaces.low, action_spaces.high]. Default to True.
:param str action_bound_method: method to bound action to range [-1, 1], can be
either "clip" (for simply clipping the action) or empty string for no bounding.
Default to "clip".
:param Optional[gym.Space] action_space: env's action space, mandatory if you want
to use option "action_scaling" or "action_bound_method". Default to None.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update(). Default to None (no lr_scheduler).
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
actor: Optional[torch.nn.Module],
actor_optim: Optional[torch.optim.Optimizer],
critic: Optional[torch.nn.Module],
critic_optim: Optional[torch.optim.Optimizer],
tau: float = 0.005,
gamma: float = 0.99,
exploration_noise: Optional[BaseNoise] = GaussianNoise(sigma=0.1),
reward_normalization: bool = False,
estimation_step: int = 1,
action_scaling: bool = True,
action_bound_method: str = "clip",
**kwargs: Any,
) -> None:
super().__init__(
action_scaling=action_scaling,
action_bound_method=action_bound_method,
**kwargs
)
assert action_bound_method != "tanh", "tanh mapping is not supported" \
"in policies where action is used as input of critic , because" \
"raw action in range (-inf, inf) will cause instability in training"
try:
if actor is not None and action_scaling and \
not np.isclose(actor.max_action, 1.): # type: ignore
import warnings
warnings.warn(
"action_scaling and action_bound_method are only intended to deal"
"with unbounded model action space, but find actor model bound"
f"action space with max_action={actor.max_action}."
"Consider using unbounded=True option of the actor model,"
"or set action_scaling to False and action_bound_method to \"\"."
)
except Exception:
pass
if actor is not None and actor_optim is not None:
self.actor: torch.nn.Module = actor
self.actor_old = deepcopy(actor)
self.actor_old.eval()
self.actor_optim: torch.optim.Optimizer = actor_optim
if critic is not None and critic_optim is not None:
self.critic: torch.nn.Module = critic
self.critic_old = deepcopy(critic)
self.critic_old.eval()
self.critic_optim: torch.optim.Optimizer = critic_optim
assert 0.0 <= tau <= 1.0, "tau should be in [0, 1]"
self.tau = tau
assert 0.0 <= gamma <= 1.0, "gamma should be in [0, 1]"
self._gamma = gamma
self._noise = exploration_noise
# it is only a little difference to use GaussianNoise
# self.noise = OUNoise()
self._rew_norm = reward_normalization
self._n_step = estimation_step
def set_exp_noise(self, noise: Optional[BaseNoise]) -> None:
"""Set the exploration noise."""
self._noise = noise
def train(self, mode: bool = True) -> "DDPGPolicy":
"""Set the module in training mode, except for the target network."""
self.training = mode
self.actor.train(mode)
self.critic.train(mode)
return self
def sync_weight(self) -> None:
"""Soft-update the weight for the target network."""
self.soft_update(self.actor_old, self.actor, self.tau)
self.soft_update(self.critic_old, self.critic, self.tau)
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
batch = buffer[indices] # batch.obs_next: s_{t+n}
target_q = self.critic_old(
batch.obs_next,
self(batch, model='actor_old', input='obs_next').act
)
return target_q
def process_fn(
self, batch: Batch, buffer: ReplayBuffer, indices: np.ndarray
) -> Batch:
batch = self.compute_nstep_return(
batch, buffer, indices, self._target_q, self._gamma, self._n_step,
self._rew_norm
)
return batch
def forward(
self,
batch: Batch,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
model: str = "actor",
input: str = "obs",
**kwargs: Any,
) -> Batch:
"""Compute action over the given batch data.
:return: A :class:`~tianshou.data.Batch` which has 2 keys:
* ``act`` the action.
* ``state`` the hidden state.
.. seealso::
Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for
more detailed explanation.
"""
model = getattr(self, model)
obs = batch[input]
actions, hidden = model(obs, state=state, info=batch.info)
return Batch(act=actions, state=hidden)
@staticmethod
def _mse_optimizer(
batch: Batch, critic: torch.nn.Module, optimizer: torch.optim.Optimizer
) -> Tuple[torch.Tensor, torch.Tensor]:
"""A simple wrapper script for updating critic network."""
weight = getattr(batch, "weight", 1.0)
current_q = critic(batch.obs, batch.act).flatten()
target_q = batch.returns.flatten()
td = current_q - target_q
# critic_loss = F.mse_loss(current_q1, target_q)
critic_loss = (td.pow(2) * weight).mean()
optimizer.zero_grad()
critic_loss.backward()
optimizer.step()
return td, critic_loss
def learn(self, batch: Batch, **kwargs: Any) -> Dict[str, float]:
# critic
td, critic_loss = self._mse_optimizer(batch, self.critic, self.critic_optim)
batch.weight = td # prio-buffer
# actor
actor_loss = -self.critic(batch.obs, self(batch).act).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
self.sync_weight()
return {
"loss/actor": actor_loss.item(),
"loss/critic": critic_loss.item(),
}
def exploration_noise(self, act: Union[np.ndarray, Batch],
batch: Batch) -> Union[np.ndarray, Batch]:
if self._noise is None:
return act
if isinstance(act, np.ndarray):
return act + self._noise(act.shape)
warnings.warn("Cannot add exploration noise to non-numpy_array action.")
return act