ChenDRAG 150d0ec51b
Step collector implementation (#280)
This is the third PR of 6 commits mentioned in #274, which features refactor of Collector to fix #245. You can check #274 for more detail.

Things changed in this PR:

1. refactor collector to be more cleaner, split AsyncCollector to support asyncvenv;
2. change buffer.add api to add(batch, bffer_ids); add several types of buffer (VectorReplayBuffer, PrioritizedVectorReplayBuffer, etc.)
3. add policy.exploration_noise(act, batch) -> act
4. small change in BasePolicy.compute_*_returns
5. move reward_metric from collector to trainer
6. fix np.asanyarray issue (different version's numpy will result in different output)
7. flake8 maxlength=88
8. polish docs and fix test

Co-authored-by: n+e <trinkle23897@gmail.com>
2021-02-19 10:33:49 +08:00

112 lines
4.5 KiB
Python

import os
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import PPOPolicy
from tianshou.env import SubprocVectorEnv
from tianshou.utils.net.common import Net
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.utils.net.discrete import Actor, Critic
from atari import create_atari_environment, preprocess_fn
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pong')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=1000)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--repeat-per-collect', type=int, default=2)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--hidden-sizes', type=int,
nargs='*', default=[128, 128])
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=8)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
# ppo special
parser.add_argument('--vf-coef', type=float, default=0.5)
parser.add_argument('--ent-coef', type=float, default=0.0)
parser.add_argument('--eps-clip', type=float, default=0.2)
parser.add_argument('--max-grad-norm', type=float, default=0.5)
parser.add_argument('--max-episode-steps', type=int, default=2000)
return parser.parse_args()
def test_ppo(args=get_args()):
env = create_atari_environment(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space().shape or env.action_space().n
# train_envs = gym.make(args.task)
train_envs = SubprocVectorEnv([
lambda: create_atari_environment(args.task)
for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv([
lambda: create_atari_environment(args.task)
for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes,
device=args.device)
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
critic = Critic(net, device=args.device).to(args.device)
optim = torch.optim.Adam(set(
actor.parameters()).union(critic.parameters()), lr=args.lr)
dist = torch.distributions.Categorical
policy = PPOPolicy(
actor, critic, optim, dist, args.gamma,
max_grad_norm=args.max_grad_norm,
eps_clip=args.eps_clip,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
action_range=None)
# collector
train_collector = Collector(
policy, train_envs,
VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs)),
preprocess_fn=preprocess_fn, exploration_noise=True)
test_collector = Collector(policy, test_envs, preprocess_fn=preprocess_fn)
# log
writer = SummaryWriter(os.path.join(args.logdir, args.task, 'ppo'))
def stop_fn(mean_rewards):
if env.env.spec.reward_threshold:
return mean_rewards >= env.spec.reward_threshold
else:
return False
# trainer
result = onpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
args.test_num, args.batch_size, stop_fn=stop_fn, writer=writer)
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = create_atari_environment(args.task)
collector = Collector(policy, env, preprocess_fn=preprocess_fn)
result = collector.collect(n_step=2000, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == '__main__':
test_ppo()