Tianshou/test/base/test_collector.py
ChenDRAG 150d0ec51b
Step collector implementation (#280)
This is the third PR of 6 commits mentioned in #274, which features refactor of Collector to fix #245. You can check #274 for more detail.

Things changed in this PR:

1. refactor collector to be more cleaner, split AsyncCollector to support asyncvenv;
2. change buffer.add api to add(batch, bffer_ids); add several types of buffer (VectorReplayBuffer, PrioritizedVectorReplayBuffer, etc.)
3. add policy.exploration_noise(act, batch) -> act
4. small change in BasePolicy.compute_*_returns
5. move reward_metric from collector to trainer
6. fix np.asanyarray issue (different version's numpy will result in different output)
7. flake8 maxlength=88
8. polish docs and fix test

Co-authored-by: n+e <trinkle23897@gmail.com>
2021-02-19 10:33:49 +08:00

418 lines
15 KiB
Python

import tqdm
import pytest
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import BasePolicy
from tianshou.env import DummyVectorEnv, SubprocVectorEnv
from tianshou.data import Batch, Collector, AsyncCollector
from tianshou.data import (
ReplayBuffer,
PrioritizedReplayBuffer,
VectorReplayBuffer,
CachedReplayBuffer,
)
if __name__ == '__main__':
from env import MyTestEnv
else: # pytest
from test.base.env import MyTestEnv
class MyPolicy(BasePolicy):
def __init__(self, dict_state=False, need_state=True):
"""
:param bool dict_state: if the observation of the environment is a dict
:param bool need_state: if the policy needs the hidden state (for RNN)
"""
super().__init__()
self.dict_state = dict_state
self.need_state = need_state
def forward(self, batch, state=None):
if self.need_state:
if state is None:
state = np.zeros((len(batch.obs), 2))
else:
state += 1
if self.dict_state:
return Batch(act=np.ones(len(batch.obs['index'])), state=state)
return Batch(act=np.ones(len(batch.obs)), state=state)
def learn(self):
pass
class Logger:
def __init__(self, writer):
self.cnt = 0
self.writer = writer
def preprocess_fn(self, **kwargs):
# modify info before adding into the buffer, and recorded into tfb
# if only obs exist -> reset
# if obs_next/rew/done/info exist -> normal step
if 'rew' in kwargs:
info = kwargs['info']
info.rew = kwargs['rew']
if 'key' in info.keys():
self.writer.add_scalar(
'key', np.mean(info.key), global_step=self.cnt)
self.cnt += 1
return Batch(info=info)
else:
return Batch()
@staticmethod
def single_preprocess_fn(**kwargs):
# same as above, without tfb
if 'rew' in kwargs:
info = kwargs['info']
info.rew = kwargs['rew']
return Batch(info=info)
else:
return Batch()
def test_collector():
writer = SummaryWriter('log/collector')
logger = Logger(writer)
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0) for i in [2, 3, 4, 5]]
venv = SubprocVectorEnv(env_fns)
dum = DummyVectorEnv(env_fns)
policy = MyPolicy()
env = env_fns[0]()
c0 = Collector(policy, env, ReplayBuffer(size=100), logger.preprocess_fn)
c0.collect(n_step=3)
assert len(c0.buffer) == 3
assert np.allclose(c0.buffer.obs[:4, 0], [0, 1, 0, 0])
assert np.allclose(c0.buffer[:].obs_next[..., 0], [1, 2, 1])
c0.collect(n_episode=3)
assert len(c0.buffer) == 8
assert np.allclose(c0.buffer.obs[:10, 0], [0, 1, 0, 1, 0, 1, 0, 1, 0, 0])
assert np.allclose(c0.buffer[:].obs_next[..., 0],
[1, 2, 1, 2, 1, 2, 1, 2])
c0.collect(n_step=3, random=True)
c1 = Collector(
policy, venv,
VectorReplayBuffer(total_size=100, buffer_num=4),
logger.preprocess_fn)
c1.collect(n_step=8)
obs = np.zeros(100)
obs[[0, 1, 25, 26, 50, 51, 75, 76]] = [0, 1, 0, 1, 0, 1, 0, 1]
assert np.allclose(c1.buffer.obs[:, 0], obs)
assert np.allclose(c1.buffer[:].obs_next[..., 0], [1, 2, 1, 2, 1, 2, 1, 2])
c1.collect(n_episode=4)
assert len(c1.buffer) == 16
obs[[2, 3, 27, 52, 53, 77, 78, 79]] = [0, 1, 2, 2, 3, 2, 3, 4]
assert np.allclose(c1.buffer.obs[:, 0], obs)
assert np.allclose(c1.buffer[:].obs_next[..., 0],
[1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5])
c1.collect(n_episode=4, random=True)
c2 = Collector(
policy, dum,
VectorReplayBuffer(total_size=100, buffer_num=4),
logger.preprocess_fn)
c2.collect(n_episode=7)
obs1 = obs.copy()
obs1[[4, 5, 28, 29, 30]] = [0, 1, 0, 1, 2]
obs2 = obs.copy()
obs2[[28, 29, 30, 54, 55, 56, 57]] = [0, 1, 2, 0, 1, 2, 3]
c2obs = c2.buffer.obs[:, 0]
assert np.all(c2obs == obs1) or np.all(c2obs == obs2)
c2.reset_env()
c2.reset_buffer()
assert c2.collect(n_episode=8)['n/ep'] == 8
obs[[4, 5, 28, 29, 30, 54, 55, 56, 57]] = [0, 1, 0, 1, 2, 0, 1, 2, 3]
assert np.all(c2.buffer.obs[:, 0] == obs)
c2.collect(n_episode=4, random=True)
# test corner case
with pytest.raises(TypeError):
Collector(policy, dum, ReplayBuffer(10))
with pytest.raises(TypeError):
Collector(policy, dum, PrioritizedReplayBuffer(10, 0.5, 0.5))
with pytest.raises(TypeError):
c2.collect()
def test_collector_with_async():
env_lens = [2, 3, 4, 5]
writer = SummaryWriter('log/async_collector')
logger = Logger(writer)
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0.001, random_sleep=True)
for i in env_lens]
venv = SubprocVectorEnv(env_fns, wait_num=len(env_fns) - 1)
policy = MyPolicy()
bufsize = 60
c1 = AsyncCollector(
policy, venv,
VectorReplayBuffer(total_size=bufsize * 4, buffer_num=4),
logger.preprocess_fn)
ptr = [0, 0, 0, 0]
for n_episode in tqdm.trange(1, 30, desc="test async n_episode"):
result = c1.collect(n_episode=n_episode)
assert result["n/ep"] >= n_episode
# check buffer data, obs and obs_next, env_id
for i, count in enumerate(
np.bincount(result["lens"], minlength=6)[2:]):
env_len = i + 2
total = env_len * count
indices = np.arange(ptr[i], ptr[i] + total) % bufsize
ptr[i] = (ptr[i] + total) % bufsize
seq = np.arange(env_len)
buf = c1.buffer.buffers[i]
assert np.all(buf.info.env_id[indices] == i)
assert np.all(buf.obs[indices].reshape(count, env_len) == seq)
assert np.all(buf.obs_next[indices].reshape(
count, env_len) == seq + 1)
# test async n_step, for now the buffer should be full of data
for n_step in tqdm.trange(1, 15, desc="test async n_step"):
result = c1.collect(n_step=n_step)
assert result["n/st"] >= n_step
for i in range(4):
env_len = i + 2
seq = np.arange(env_len)
buf = c1.buffer.buffers[i]
assert np.all(buf.info.env_id == i)
assert np.all(buf.obs.reshape(-1, env_len) == seq)
assert np.all(buf.obs_next.reshape(-1, env_len) == seq + 1)
with pytest.raises(TypeError):
c1.collect()
def test_collector_with_dict_state():
env = MyTestEnv(size=5, sleep=0, dict_state=True)
policy = MyPolicy(dict_state=True)
c0 = Collector(policy, env, ReplayBuffer(size=100),
Logger.single_preprocess_fn)
c0.collect(n_step=3)
c0.collect(n_episode=2)
assert len(c0.buffer) == 10
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, dict_state=True)
for i in [2, 3, 4, 5]]
envs = DummyVectorEnv(env_fns)
envs.seed(666)
obs = envs.reset()
assert not np.isclose(obs[0]['rand'], obs[1]['rand'])
c1 = Collector(
policy, envs,
VectorReplayBuffer(total_size=100, buffer_num=4),
Logger.single_preprocess_fn)
c1.collect(n_step=12)
result = c1.collect(n_episode=8)
assert result['n/ep'] == 8
lens = np.bincount(result['lens'])
assert result['n/st'] == 21 and np.all(lens == [0, 0, 2, 2, 2, 2]) or \
result['n/st'] == 20 and np.all(lens == [0, 0, 3, 1, 2, 2])
batch, _ = c1.buffer.sample(10)
c0.buffer.update(c1.buffer)
assert len(c0.buffer) in [42, 43]
if len(c0.buffer) == 42:
assert np.all(c0.buffer[:].obs.index[..., 0] == [
0, 1, 2, 3, 4, 0, 1, 2, 3, 4,
0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 2, 0, 1, 2,
0, 1, 2, 3, 0, 1, 2, 3,
0, 1, 2, 3, 4, 0, 1, 2, 3, 4,
]), c0.buffer[:].obs.index[..., 0]
else:
assert np.all(c0.buffer[:].obs.index[..., 0] == [
0, 1, 2, 3, 4, 0, 1, 2, 3, 4,
0, 1, 0, 1, 0, 1,
0, 1, 2, 0, 1, 2, 0, 1, 2,
0, 1, 2, 3, 0, 1, 2, 3,
0, 1, 2, 3, 4, 0, 1, 2, 3, 4,
]), c0.buffer[:].obs.index[..., 0]
c2 = Collector(
policy, envs,
VectorReplayBuffer(total_size=100, buffer_num=4, stack_num=4),
Logger.single_preprocess_fn)
c2.collect(n_episode=10)
batch, _ = c2.buffer.sample(10)
def test_collector_with_ma():
env = MyTestEnv(size=5, sleep=0, ma_rew=4)
policy = MyPolicy()
c0 = Collector(policy, env, ReplayBuffer(size=100),
Logger.single_preprocess_fn)
# n_step=3 will collect a full episode
r = c0.collect(n_step=3)['rews']
assert len(r) == 0
r = c0.collect(n_episode=2)['rews']
assert r.shape == (2, 4) and np.all(r == 1)
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, ma_rew=4)
for i in [2, 3, 4, 5]]
envs = DummyVectorEnv(env_fns)
c1 = Collector(
policy, envs,
VectorReplayBuffer(total_size=100, buffer_num=4),
Logger.single_preprocess_fn)
r = c1.collect(n_step=12)['rews']
assert r.shape == (2, 4) and np.all(r == 1), r
r = c1.collect(n_episode=8)['rews']
assert r.shape == (8, 4) and np.all(r == 1)
batch, _ = c1.buffer.sample(10)
print(batch)
c0.buffer.update(c1.buffer)
assert len(c0.buffer) in [42, 43]
if len(c0.buffer) == 42:
rew = [
0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1,
0, 0, 1, 0, 0, 1,
0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
]
else:
rew = [
0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
0, 1, 0, 1, 0, 1,
0, 0, 1, 0, 0, 1, 0, 0, 1,
0, 0, 0, 1, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0, 0, 0, 0, 1,
]
assert np.all(c0.buffer[:].rew == [[x] * 4 for x in rew])
assert np.all(c0.buffer[:].done == rew)
c2 = Collector(
policy, envs,
VectorReplayBuffer(total_size=100, buffer_num=4, stack_num=4),
Logger.single_preprocess_fn)
r = c2.collect(n_episode=10)['rews']
assert r.shape == (10, 4) and np.all(r == 1)
batch, _ = c2.buffer.sample(10)
def test_collector_with_atari_setting():
reference_obs = np.zeros([6, 4, 84, 84])
for i in range(6):
reference_obs[i, 3, np.arange(84), np.arange(84)] = i
reference_obs[i, 2, np.arange(84)] = i
reference_obs[i, 1, :, np.arange(84)] = i
reference_obs[i, 0] = i
# atari single buffer
env = MyTestEnv(size=5, sleep=0, array_state=True)
policy = MyPolicy()
c0 = Collector(policy, env, ReplayBuffer(size=100))
c0.collect(n_step=6)
c0.collect(n_episode=2)
assert c0.buffer.obs.shape == (100, 4, 84, 84)
assert c0.buffer.obs_next.shape == (100, 4, 84, 84)
assert len(c0.buffer) == 15
obs = np.zeros_like(c0.buffer.obs)
obs[np.arange(15)] = reference_obs[np.arange(15) % 5]
assert np.all(obs == c0.buffer.obs)
c1 = Collector(policy, env, ReplayBuffer(size=100, ignore_obs_next=True))
c1.collect(n_episode=3)
assert np.allclose(c0.buffer.obs, c1.buffer.obs)
with pytest.raises(AttributeError):
c1.buffer.obs_next
assert np.all(reference_obs[[1, 2, 3, 4, 4] * 3] == c1.buffer[:].obs_next)
c2 = Collector(
policy, env,
ReplayBuffer(size=100, ignore_obs_next=True, save_only_last_obs=True))
c2.collect(n_step=8)
assert c2.buffer.obs.shape == (100, 84, 84)
obs = np.zeros_like(c2.buffer.obs)
obs[np.arange(8)] = reference_obs[[0, 1, 2, 3, 4, 0, 1, 2], -1]
assert np.all(c2.buffer.obs == obs)
assert np.allclose(c2.buffer[:].obs_next,
reference_obs[[1, 2, 3, 4, 4, 1, 2, 2], -1])
# atari multi buffer
env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, array_state=True)
for i in [2, 3, 4, 5]]
envs = DummyVectorEnv(env_fns)
c3 = Collector(
policy, envs,
VectorReplayBuffer(total_size=100, buffer_num=4))
c3.collect(n_step=12)
result = c3.collect(n_episode=9)
assert result["n/ep"] == 9 and result["n/st"] == 23
assert c3.buffer.obs.shape == (100, 4, 84, 84)
obs = np.zeros_like(c3.buffer.obs)
obs[np.arange(8)] = reference_obs[[0, 1, 0, 1, 0, 1, 0, 1]]
obs[np.arange(25, 34)] = reference_obs[[0, 1, 2, 0, 1, 2, 0, 1, 2]]
obs[np.arange(50, 58)] = reference_obs[[0, 1, 2, 3, 0, 1, 2, 3]]
obs[np.arange(75, 85)] = reference_obs[[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]]
assert np.all(obs == c3.buffer.obs)
obs_next = np.zeros_like(c3.buffer.obs_next)
obs_next[np.arange(8)] = reference_obs[[1, 2, 1, 2, 1, 2, 1, 2]]
obs_next[np.arange(25, 34)] = reference_obs[[1, 2, 3, 1, 2, 3, 1, 2, 3]]
obs_next[np.arange(50, 58)] = reference_obs[[1, 2, 3, 4, 1, 2, 3, 4]]
obs_next[np.arange(75, 85)] = reference_obs[[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]]
assert np.all(obs_next == c3.buffer.obs_next)
c4 = Collector(
policy, envs,
VectorReplayBuffer(total_size=100, buffer_num=4, stack_num=4,
ignore_obs_next=True, save_only_last_obs=True))
c4.collect(n_step=12)
result = c4.collect(n_episode=9)
assert result["n/ep"] == 9 and result["n/st"] == 23
assert c4.buffer.obs.shape == (100, 84, 84)
obs = np.zeros_like(c4.buffer.obs)
slice_obs = reference_obs[:, -1]
obs[np.arange(8)] = slice_obs[[0, 1, 0, 1, 0, 1, 0, 1]]
obs[np.arange(25, 34)] = slice_obs[[0, 1, 2, 0, 1, 2, 0, 1, 2]]
obs[np.arange(50, 58)] = slice_obs[[0, 1, 2, 3, 0, 1, 2, 3]]
obs[np.arange(75, 85)] = slice_obs[[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]]
assert np.all(c4.buffer.obs == obs)
obs_next = np.zeros([len(c4.buffer), 4, 84, 84])
ref_index = np.array([
1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 2, 1, 2, 2, 1, 2, 2,
1, 2, 3, 3, 1, 2, 3, 3,
1, 2, 3, 4, 4, 1, 2, 3, 4, 4,
])
obs_next[:, -1] = slice_obs[ref_index]
ref_index -= 1
ref_index[ref_index < 0] = 0
obs_next[:, -2] = slice_obs[ref_index]
ref_index -= 1
ref_index[ref_index < 0] = 0
obs_next[:, -3] = slice_obs[ref_index]
ref_index -= 1
ref_index[ref_index < 0] = 0
obs_next[:, -4] = slice_obs[ref_index]
assert np.all(obs_next == c4.buffer[:].obs_next)
buf = ReplayBuffer(100, stack_num=4, ignore_obs_next=True,
save_only_last_obs=True)
c5 = Collector(policy, envs, CachedReplayBuffer(buf, 4, 10))
result_ = c5.collect(n_step=12)
assert len(buf) == 5 and len(c5.buffer) == 12
result = c5.collect(n_episode=9)
assert result["n/ep"] == 9 and result["n/st"] == 23
assert len(buf) == 35
assert np.all(buf.obs[:len(buf)] == slice_obs[[
0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4,
0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 4]])
assert np.all(buf[:].obs_next[:, -1] == slice_obs[[
1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 1, 2, 3, 4, 4,
1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 1, 2, 2, 1, 2, 3, 4, 4]])
assert len(buf) == len(c5.buffer)
# test buffer=None
c6 = Collector(policy, envs)
result1 = c6.collect(n_step=12)
for key in ["n/ep", "n/st", "rews", "lens"]:
assert np.allclose(result1[key], result_[key])
result2 = c6.collect(n_episode=9)
for key in ["n/ep", "n/st", "rews", "lens"]:
assert np.allclose(result2[key], result[key])
if __name__ == '__main__':
test_collector()
test_collector_with_dict_state()
test_collector_with_ma()
test_collector_with_atari_setting()
test_collector_with_async()