This is the PR for QR-DQN algorithm: https://arxiv.org/abs/1710.10044 1. add QR-DQN policy in tianshou/policy/modelfree/qrdqn.py. 2. add QR-DQN net in examples/atari/atari_network.py. 3. add QR-DQN atari example in examples/atari/atari_qrdqn.py. 4. add QR-DQN statement in tianshou/policy/init.py. 5. add QR-DQN unit test in test/discrete/test_qrdqn.py. 6. add QR-DQN atari results in examples/atari/results/qrdqn/. 7. add compute_q_value in DQNPolicy and C51Policy for simplify forward function. 8. move `with torch.no_grad():` from `_target_q` to BasePolicy By running "python3 atari_qrdqn.py --task "PongNoFrameskip-v4" --batch-size 64", get best_result': '19.8 ± 0.40', in epoch 8.
153 lines
6.0 KiB
Python
153 lines
6.0 KiB
Python
import torch
|
|
import numpy as np
|
|
from copy import deepcopy
|
|
from typing import Any, Dict, Tuple, Optional
|
|
|
|
from tianshou.policy import DDPGPolicy
|
|
from tianshou.data import Batch, ReplayBuffer
|
|
from tianshou.exploration import BaseNoise, GaussianNoise
|
|
|
|
|
|
class TD3Policy(DDPGPolicy):
|
|
"""Implementation of TD3, arXiv:1802.09477.
|
|
|
|
:param torch.nn.Module actor: the actor network following the rules in
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
|
|
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
|
|
:param torch.nn.Module critic1: the first critic network. (s, a -> Q(s,
|
|
a))
|
|
:param torch.optim.Optimizer critic1_optim: the optimizer for the first
|
|
critic network.
|
|
:param torch.nn.Module critic2: the second critic network. (s, a -> Q(s,
|
|
a))
|
|
:param torch.optim.Optimizer critic2_optim: the optimizer for the second
|
|
critic network.
|
|
:param action_range: the action range (minimum, maximum).
|
|
:type action_range: Tuple[float, float]
|
|
:param float tau: param for soft update of the target network, defaults to
|
|
0.005.
|
|
:param float gamma: discount factor, in [0, 1], defaults to 0.99.
|
|
:param float exploration_noise: the exploration noise, add to the action,
|
|
defaults to ``GaussianNoise(sigma=0.1)``
|
|
:param float policy_noise: the noise used in updating policy network,
|
|
default to 0.2.
|
|
:param int update_actor_freq: the update frequency of actor network,
|
|
default to 2.
|
|
:param float noise_clip: the clipping range used in updating policy
|
|
network, default to 0.5.
|
|
:param bool reward_normalization: normalize the reward to Normal(0, 1),
|
|
defaults to False.
|
|
:param bool ignore_done: ignore the done flag while training the policy,
|
|
defaults to False.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
actor: torch.nn.Module,
|
|
actor_optim: torch.optim.Optimizer,
|
|
critic1: torch.nn.Module,
|
|
critic1_optim: torch.optim.Optimizer,
|
|
critic2: torch.nn.Module,
|
|
critic2_optim: torch.optim.Optimizer,
|
|
action_range: Tuple[float, float],
|
|
tau: float = 0.005,
|
|
gamma: float = 0.99,
|
|
exploration_noise: Optional[BaseNoise] = GaussianNoise(sigma=0.1),
|
|
policy_noise: float = 0.2,
|
|
update_actor_freq: int = 2,
|
|
noise_clip: float = 0.5,
|
|
reward_normalization: bool = False,
|
|
ignore_done: bool = False,
|
|
estimation_step: int = 1,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
super().__init__(actor, actor_optim, None, None, action_range,
|
|
tau, gamma, exploration_noise, reward_normalization,
|
|
ignore_done, estimation_step, **kwargs)
|
|
self.critic1, self.critic1_old = critic1, deepcopy(critic1)
|
|
self.critic1_old.eval()
|
|
self.critic1_optim = critic1_optim
|
|
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
|
|
self.critic2_old.eval()
|
|
self.critic2_optim = critic2_optim
|
|
self._policy_noise = policy_noise
|
|
self._freq = update_actor_freq
|
|
self._noise_clip = noise_clip
|
|
self._cnt = 0
|
|
self._last = 0
|
|
|
|
def train(self, mode: bool = True) -> "TD3Policy":
|
|
self.training = mode
|
|
self.actor.train(mode)
|
|
self.critic1.train(mode)
|
|
self.critic2.train(mode)
|
|
return self
|
|
|
|
def sync_weight(self) -> None:
|
|
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
|
|
o.data.copy_(o.data * (1.0 - self._tau) + n.data * self._tau)
|
|
for o, n in zip(
|
|
self.critic1_old.parameters(), self.critic1.parameters()
|
|
):
|
|
o.data.copy_(o.data * (1.0 - self._tau) + n.data * self._tau)
|
|
for o, n in zip(
|
|
self.critic2_old.parameters(), self.critic2.parameters()
|
|
):
|
|
o.data.copy_(o.data * (1.0 - self._tau) + n.data * self._tau)
|
|
|
|
def _target_q(
|
|
self, buffer: ReplayBuffer, indice: np.ndarray
|
|
) -> torch.Tensor:
|
|
batch = buffer[indice] # batch.obs: s_{t+n}
|
|
a_ = self(batch, model="actor_old", input="obs_next").act
|
|
dev = a_.device
|
|
noise = torch.randn(size=a_.shape, device=dev) * self._policy_noise
|
|
if self._noise_clip > 0.0:
|
|
noise = noise.clamp(-self._noise_clip, self._noise_clip)
|
|
a_ += noise
|
|
a_ = a_.clamp(self._range[0], self._range[1])
|
|
target_q = torch.min(
|
|
self.critic1_old(batch.obs_next, a_),
|
|
self.critic2_old(batch.obs_next, a_))
|
|
return target_q
|
|
|
|
def learn(self, batch: Batch, **kwargs: Any) -> Dict[str, float]:
|
|
weight = batch.pop("weight", 1.0)
|
|
# critic 1
|
|
current_q1 = self.critic1(batch.obs, batch.act).flatten()
|
|
target_q = batch.returns.flatten()
|
|
td1 = current_q1 - target_q
|
|
critic1_loss = (td1.pow(2) * weight).mean()
|
|
# critic1_loss = F.mse_loss(current_q1, target_q)
|
|
self.critic1_optim.zero_grad()
|
|
critic1_loss.backward()
|
|
self.critic1_optim.step()
|
|
# critic 2
|
|
current_q2 = self.critic2(batch.obs, batch.act).flatten()
|
|
td2 = current_q2 - target_q
|
|
critic2_loss = (td2.pow(2) * weight).mean()
|
|
# critic2_loss = F.mse_loss(current_q2, target_q)
|
|
self.critic2_optim.zero_grad()
|
|
critic2_loss.backward()
|
|
self.critic2_optim.step()
|
|
batch.weight = (td1 + td2) / 2.0 # prio-buffer
|
|
if self._cnt % self._freq == 0:
|
|
actor_loss = -self.critic1(
|
|
batch.obs, self(batch, eps=0.0).act).mean()
|
|
self.actor_optim.zero_grad()
|
|
actor_loss.backward()
|
|
self._last = actor_loss.item()
|
|
self.actor_optim.step()
|
|
self.sync_weight()
|
|
self._cnt += 1
|
|
return {
|
|
"loss/actor": self._last,
|
|
"loss/critic1": critic1_loss.item(),
|
|
"loss/critic2": critic2_loss.item(),
|
|
}
|