227 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			227 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
#!/usr/bin/env python3
 | 
						|
 | 
						|
import argparse
 | 
						|
import datetime
 | 
						|
import os
 | 
						|
import pprint
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from mujoco_env import make_mujoco_env
 | 
						|
from torch import nn
 | 
						|
from torch.distributions import Independent, Normal
 | 
						|
from torch.optim.lr_scheduler import LambdaLR
 | 
						|
from torch.utils.tensorboard import SummaryWriter
 | 
						|
 | 
						|
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
 | 
						|
from tianshou.policy import NPGPolicy
 | 
						|
from tianshou.trainer import OnpolicyTrainer
 | 
						|
from tianshou.utils import TensorboardLogger, WandbLogger
 | 
						|
from tianshou.utils.net.common import Net
 | 
						|
from tianshou.utils.net.continuous import ActorProb, Critic
 | 
						|
 | 
						|
 | 
						|
def get_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument("--task", type=str, default="Ant-v3")
 | 
						|
    parser.add_argument("--seed", type=int, default=0)
 | 
						|
    parser.add_argument("--buffer-size", type=int, default=4096)
 | 
						|
    parser.add_argument(
 | 
						|
        "--hidden-sizes",
 | 
						|
        type=int,
 | 
						|
        nargs="*",
 | 
						|
        default=[64, 64],
 | 
						|
    )  # baselines [32, 32]
 | 
						|
    parser.add_argument("--lr", type=float, default=1e-3)
 | 
						|
    parser.add_argument("--gamma", type=float, default=0.99)
 | 
						|
    parser.add_argument("--epoch", type=int, default=100)
 | 
						|
    parser.add_argument("--step-per-epoch", type=int, default=30000)
 | 
						|
    parser.add_argument("--step-per-collect", type=int, default=1024)
 | 
						|
    parser.add_argument("--repeat-per-collect", type=int, default=1)
 | 
						|
    # batch-size >> step-per-collect means calculating all data in one singe forward.
 | 
						|
    parser.add_argument("--batch-size", type=int, default=None)
 | 
						|
    parser.add_argument("--training-num", type=int, default=16)
 | 
						|
    parser.add_argument("--test-num", type=int, default=10)
 | 
						|
    # npg special
 | 
						|
    parser.add_argument("--rew-norm", type=int, default=True)
 | 
						|
    parser.add_argument("--gae-lambda", type=float, default=0.95)
 | 
						|
    parser.add_argument("--bound-action-method", type=str, default="clip")
 | 
						|
    parser.add_argument("--lr-decay", type=int, default=True)
 | 
						|
    parser.add_argument("--logdir", type=str, default="log")
 | 
						|
    parser.add_argument("--render", type=float, default=0.0)
 | 
						|
    parser.add_argument("--norm-adv", type=int, default=1)
 | 
						|
    parser.add_argument("--optim-critic-iters", type=int, default=20)
 | 
						|
    parser.add_argument("--actor-step-size", type=float, default=0.1)
 | 
						|
    parser.add_argument(
 | 
						|
        "--device",
 | 
						|
        type=str,
 | 
						|
        default="cuda" if torch.cuda.is_available() else "cpu",
 | 
						|
    )
 | 
						|
    parser.add_argument("--resume-path", type=str, default=None)
 | 
						|
    parser.add_argument("--resume-id", type=str, default=None)
 | 
						|
    parser.add_argument(
 | 
						|
        "--logger",
 | 
						|
        type=str,
 | 
						|
        default="tensorboard",
 | 
						|
        choices=["tensorboard", "wandb"],
 | 
						|
    )
 | 
						|
    parser.add_argument("--wandb-project", type=str, default="mujoco.benchmark")
 | 
						|
    parser.add_argument(
 | 
						|
        "--watch",
 | 
						|
        default=False,
 | 
						|
        action="store_true",
 | 
						|
        help="watch the play of pre-trained policy only",
 | 
						|
    )
 | 
						|
    return parser.parse_args()
 | 
						|
 | 
						|
 | 
						|
def test_npg(args=get_args()):
 | 
						|
    env, train_envs, test_envs = make_mujoco_env(
 | 
						|
        args.task,
 | 
						|
        args.seed,
 | 
						|
        args.training_num,
 | 
						|
        args.test_num,
 | 
						|
        obs_norm=True,
 | 
						|
    )
 | 
						|
    args.state_shape = env.observation_space.shape or env.observation_space.n
 | 
						|
    args.action_shape = env.action_space.shape or env.action_space.n
 | 
						|
    args.max_action = env.action_space.high[0]
 | 
						|
    print("Observations shape:", args.state_shape)
 | 
						|
    print("Actions shape:", args.action_shape)
 | 
						|
    print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
 | 
						|
    # seed
 | 
						|
    np.random.seed(args.seed)
 | 
						|
    torch.manual_seed(args.seed)
 | 
						|
    # model
 | 
						|
    net_a = Net(
 | 
						|
        args.state_shape,
 | 
						|
        hidden_sizes=args.hidden_sizes,
 | 
						|
        activation=nn.Tanh,
 | 
						|
        device=args.device,
 | 
						|
    )
 | 
						|
    actor = ActorProb(
 | 
						|
        net_a,
 | 
						|
        args.action_shape,
 | 
						|
        unbounded=True,
 | 
						|
        device=args.device,
 | 
						|
    ).to(args.device)
 | 
						|
    net_c = Net(
 | 
						|
        args.state_shape,
 | 
						|
        hidden_sizes=args.hidden_sizes,
 | 
						|
        activation=nn.Tanh,
 | 
						|
        device=args.device,
 | 
						|
    )
 | 
						|
    critic = Critic(net_c, device=args.device).to(args.device)
 | 
						|
    torch.nn.init.constant_(actor.sigma_param, -0.5)
 | 
						|
    for m in list(actor.modules()) + list(critic.modules()):
 | 
						|
        if isinstance(m, torch.nn.Linear):
 | 
						|
            # orthogonal initialization
 | 
						|
            torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
 | 
						|
            torch.nn.init.zeros_(m.bias)
 | 
						|
    # do last policy layer scaling, this will make initial actions have (close to)
 | 
						|
    # 0 mean and std, and will help boost performances,
 | 
						|
    # see https://arxiv.org/abs/2006.05990, Fig.24 for details
 | 
						|
    for m in actor.mu.modules():
 | 
						|
        if isinstance(m, torch.nn.Linear):
 | 
						|
            torch.nn.init.zeros_(m.bias)
 | 
						|
            m.weight.data.copy_(0.01 * m.weight.data)
 | 
						|
 | 
						|
    optim = torch.optim.Adam(critic.parameters(), lr=args.lr)
 | 
						|
    lr_scheduler = None
 | 
						|
    if args.lr_decay:
 | 
						|
        # decay learning rate to 0 linearly
 | 
						|
        max_update_num = np.ceil(args.step_per_epoch / args.step_per_collect) * args.epoch
 | 
						|
 | 
						|
        lr_scheduler = LambdaLR(optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num)
 | 
						|
 | 
						|
    def dist(*logits):
 | 
						|
        return Independent(Normal(*logits), 1)
 | 
						|
 | 
						|
    policy = NPGPolicy(
 | 
						|
        actor=actor,
 | 
						|
        critic=critic,
 | 
						|
        optim=optim,
 | 
						|
        dist_fn=dist,
 | 
						|
        discount_factor=args.gamma,
 | 
						|
        gae_lambda=args.gae_lambda,
 | 
						|
        reward_normalization=args.rew_norm,
 | 
						|
        action_scaling=True,
 | 
						|
        action_bound_method=args.bound_action_method,
 | 
						|
        lr_scheduler=lr_scheduler,
 | 
						|
        action_space=env.action_space,
 | 
						|
        advantage_normalization=args.norm_adv,
 | 
						|
        optim_critic_iters=args.optim_critic_iters,
 | 
						|
        actor_step_size=args.actor_step_size,
 | 
						|
    )
 | 
						|
 | 
						|
    # load a previous policy
 | 
						|
    if args.resume_path:
 | 
						|
        ckpt = torch.load(args.resume_path, map_location=args.device)
 | 
						|
        policy.load_state_dict(ckpt["model"])
 | 
						|
        train_envs.set_obs_rms(ckpt["obs_rms"])
 | 
						|
        test_envs.set_obs_rms(ckpt["obs_rms"])
 | 
						|
        print("Loaded agent from: ", args.resume_path)
 | 
						|
 | 
						|
    # collector
 | 
						|
    if args.training_num > 1:
 | 
						|
        buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
 | 
						|
    else:
 | 
						|
        buffer = ReplayBuffer(args.buffer_size)
 | 
						|
    train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
 | 
						|
    test_collector = Collector(policy, test_envs)
 | 
						|
 | 
						|
    # log
 | 
						|
    now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
 | 
						|
    args.algo_name = "npg"
 | 
						|
    log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
 | 
						|
    log_path = os.path.join(args.logdir, log_name)
 | 
						|
 | 
						|
    # logger
 | 
						|
    if args.logger == "wandb":
 | 
						|
        logger = WandbLogger(
 | 
						|
            save_interval=1,
 | 
						|
            name=log_name.replace(os.path.sep, "__"),
 | 
						|
            run_id=args.resume_id,
 | 
						|
            config=args,
 | 
						|
            project=args.wandb_project,
 | 
						|
        )
 | 
						|
    writer = SummaryWriter(log_path)
 | 
						|
    writer.add_text("args", str(args))
 | 
						|
    if args.logger == "tensorboard":
 | 
						|
        logger = TensorboardLogger(writer)
 | 
						|
    else:  # wandb
 | 
						|
        logger.load(writer)
 | 
						|
 | 
						|
    def save_best_fn(policy):
 | 
						|
        state = {"model": policy.state_dict(), "obs_rms": train_envs.get_obs_rms()}
 | 
						|
        torch.save(state, os.path.join(log_path, "policy.pth"))
 | 
						|
 | 
						|
    if not args.watch:
 | 
						|
        # trainer
 | 
						|
        result = OnpolicyTrainer(
 | 
						|
            policy=policy,
 | 
						|
            train_collector=train_collector,
 | 
						|
            test_collector=test_collector,
 | 
						|
            max_epoch=args.epoch,
 | 
						|
            step_per_epoch=args.step_per_epoch,
 | 
						|
            repeat_per_collect=args.repeat_per_collect,
 | 
						|
            episode_per_test=args.test_num,
 | 
						|
            batch_size=args.batch_size,
 | 
						|
            step_per_collect=args.step_per_collect,
 | 
						|
            save_best_fn=save_best_fn,
 | 
						|
            logger=logger,
 | 
						|
            test_in_train=False,
 | 
						|
        ).run()
 | 
						|
        pprint.pprint(result)
 | 
						|
 | 
						|
    # Let's watch its performance!
 | 
						|
    policy.eval()
 | 
						|
    test_envs.seed(args.seed)
 | 
						|
    test_collector.reset()
 | 
						|
    result = test_collector.collect(n_episode=args.test_num, render=args.render)
 | 
						|
    print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    test_npg()
 |