92 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			92 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python3
 | 
						|
 | 
						|
import os
 | 
						|
from collections.abc import Sequence
 | 
						|
from typing import Literal
 | 
						|
 | 
						|
import torch
 | 
						|
 | 
						|
from examples.mujoco.mujoco_env import MujocoEnvFactory
 | 
						|
from tianshou.highlevel.config import SamplingConfig
 | 
						|
from tianshou.highlevel.experiment import (
 | 
						|
    ExperimentConfig,
 | 
						|
    TRPOExperimentBuilder,
 | 
						|
)
 | 
						|
from tianshou.highlevel.params.dist_fn import (
 | 
						|
    DistributionFunctionFactoryIndependentGaussians,
 | 
						|
)
 | 
						|
from tianshou.highlevel.params.lr_scheduler import LRSchedulerFactoryLinear
 | 
						|
from tianshou.highlevel.params.policy_params import TRPOParams
 | 
						|
from tianshou.utils import logging
 | 
						|
from tianshou.utils.logging import datetime_tag
 | 
						|
 | 
						|
 | 
						|
def main(
 | 
						|
    experiment_config: ExperimentConfig,
 | 
						|
    task: str = "Ant-v3",
 | 
						|
    buffer_size: int = 4096,
 | 
						|
    hidden_sizes: Sequence[int] = (64, 64),
 | 
						|
    lr: float = 1e-3,
 | 
						|
    gamma: float = 0.99,
 | 
						|
    epoch: int = 100,
 | 
						|
    step_per_epoch: int = 30000,
 | 
						|
    step_per_collect: int = 1024,
 | 
						|
    repeat_per_collect: int = 1,
 | 
						|
    batch_size: int | None = None,
 | 
						|
    training_num: int = 16,
 | 
						|
    test_num: int = 10,
 | 
						|
    rew_norm: bool = True,
 | 
						|
    gae_lambda: float = 0.95,
 | 
						|
    bound_action_method: Literal["clip", "tanh"] = "clip",
 | 
						|
    lr_decay: bool = True,
 | 
						|
    norm_adv: bool = True,
 | 
						|
    optim_critic_iters: int = 20,
 | 
						|
    max_kl: float = 0.01,
 | 
						|
    backtrack_coeff: float = 0.8,
 | 
						|
    max_backtracks: int = 10,
 | 
						|
):
 | 
						|
    log_name = os.path.join(task, "trpo", str(experiment_config.seed), datetime_tag())
 | 
						|
 | 
						|
    sampling_config = SamplingConfig(
 | 
						|
        num_epochs=epoch,
 | 
						|
        step_per_epoch=step_per_epoch,
 | 
						|
        batch_size=batch_size,
 | 
						|
        num_train_envs=training_num,
 | 
						|
        num_test_envs=test_num,
 | 
						|
        buffer_size=buffer_size,
 | 
						|
        step_per_collect=step_per_collect,
 | 
						|
        repeat_per_collect=repeat_per_collect,
 | 
						|
    )
 | 
						|
 | 
						|
    env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=True)
 | 
						|
 | 
						|
    experiment = (
 | 
						|
        TRPOExperimentBuilder(env_factory, experiment_config, sampling_config)
 | 
						|
        .with_trpo_params(
 | 
						|
            TRPOParams(
 | 
						|
                discount_factor=gamma,
 | 
						|
                gae_lambda=gae_lambda,
 | 
						|
                action_bound_method=bound_action_method,
 | 
						|
                reward_normalization=rew_norm,
 | 
						|
                advantage_normalization=norm_adv,
 | 
						|
                optim_critic_iters=optim_critic_iters,
 | 
						|
                max_kl=max_kl,
 | 
						|
                backtrack_coeff=backtrack_coeff,
 | 
						|
                max_backtracks=max_backtracks,
 | 
						|
                lr=lr,
 | 
						|
                lr_scheduler_factory=LRSchedulerFactoryLinear(sampling_config)
 | 
						|
                if lr_decay
 | 
						|
                else None,
 | 
						|
                dist_fn=DistributionFunctionFactoryIndependentGaussians(),
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        .with_actor_factory_default(hidden_sizes, torch.nn.Tanh, continuous_unbounded=True)
 | 
						|
        .with_critic_factory_default(hidden_sizes, torch.nn.Tanh)
 | 
						|
        .build()
 | 
						|
    )
 | 
						|
    experiment.run(log_name)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    logging.run_cli(main)
 |