danagi 16d8e9b051
SAC implementation update (#212)
- replace DiagGuassian with Independent(Normal) (pytorch has already supported this)
- detach alpha from autograd
- add value/alpha to result (more informational)
- revert #204 to fix #211

Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-09-12 08:44:50 +08:00

191 lines
7.7 KiB
Python

import torch
import numpy as np
from copy import deepcopy
from typing import Dict, Tuple, Union, Optional
from torch.distributions import Normal, Independent
from tianshou.policy import DDPGPolicy
from tianshou.data import Batch, to_torch_as, ReplayBuffer
from tianshou.exploration import BaseNoise
class SACPolicy(DDPGPolicy):
"""Implementation of Soft Actor-Critic. arXiv:1812.05905.
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
:param torch.nn.Module critic1: the first critic network. (s, a -> Q(s,
a))
:param torch.optim.Optimizer critic1_optim: the optimizer for the first
critic network.
:param torch.nn.Module critic2: the second critic network. (s, a -> Q(s,
a))
:param torch.optim.Optimizer critic2_optim: the optimizer for the second
critic network.
:param float tau: param for soft update of the target network, defaults to
0.005.
:param float gamma: discount factor, in [0, 1], defaults to 0.99.
:param float exploration_noise: the noise intensity, add to the action,
defaults to 0.1.
:param (float, torch.Tensor, torch.optim.Optimizer) or float alpha: entropy
regularization coefficient, default to 0.2.
If a tuple (target_entropy, log_alpha, alpha_optim) is provided, then
alpha is automatatically tuned.
:param action_range: the action range (minimum, maximum).
:type action_range: (float, float)
:param bool reward_normalization: normalize the reward to Normal(0, 1),
defaults to False.
:param bool ignore_done: ignore the done flag while training the policy,
defaults to False.
:param BaseNoise exploration_noise: add a noise to action for exploration.
This is useful when solving hard-exploration problem.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
actor: torch.nn.Module,
actor_optim: torch.optim.Optimizer,
critic1: torch.nn.Module,
critic1_optim: torch.optim.Optimizer,
critic2: torch.nn.Module,
critic2_optim: torch.optim.Optimizer,
tau: float = 0.005,
gamma: float = 0.99,
alpha: Union[
float, Tuple[float, torch.Tensor, torch.optim.Optimizer]
] = 0.2,
action_range: Optional[Tuple[float, float]] = None,
reward_normalization: bool = False,
ignore_done: bool = False,
estimation_step: int = 1,
exploration_noise: Optional[BaseNoise] = None,
**kwargs
) -> None:
super().__init__(None, None, None, None, tau, gamma, exploration_noise,
action_range, reward_normalization, ignore_done,
estimation_step, **kwargs)
self.actor, self.actor_optim = actor, actor_optim
self.critic1, self.critic1_old = critic1, deepcopy(critic1)
self.critic1_old.eval()
self.critic1_optim = critic1_optim
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
self.critic2_old.eval()
self.critic2_optim = critic2_optim
self._is_auto_alpha = False
if isinstance(alpha, tuple):
self._is_auto_alpha = True
self._target_entropy, self._log_alpha, self._alpha_optim = alpha
assert alpha[1].shape == torch.Size([1]) and alpha[1].requires_grad
self._alpha = self._log_alpha.detach().exp()
else:
self._alpha = alpha
self.__eps = np.finfo(np.float32).eps.item()
def train(self, mode=True) -> torch.nn.Module:
self.training = mode
self.actor.train(mode)
self.critic1.train(mode)
self.critic2.train(mode)
return self
def sync_weight(self) -> None:
for o, n in zip(
self.critic1_old.parameters(), self.critic1.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
for o, n in zip(
self.critic2_old.parameters(), self.critic2.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
def forward(self, batch: Batch,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
input: str = 'obs',
explorating: bool = True,
**kwargs) -> Batch:
obs = getattr(batch, input)
logits, h = self.actor(obs, state=state, info=batch.info)
assert isinstance(logits, tuple)
dist = Independent(Normal(*logits), 1)
x = dist.rsample()
y = torch.tanh(x)
act = y * self._action_scale + self._action_bias
y = self._action_scale * (1 - y.pow(2)) + self.__eps
log_prob = dist.log_prob(x).unsqueeze(-1)
log_prob = log_prob - torch.log(y).sum(-1, keepdim=True)
if self._noise is not None and self.training and explorating:
act += to_torch_as(self._noise(act.shape), act)
act = act.clamp(self._range[0], self._range[1])
return Batch(
logits=logits, act=act, state=h, dist=dist, log_prob=log_prob)
def _target_q(self, buffer: ReplayBuffer,
indice: np.ndarray) -> torch.Tensor:
batch = buffer[indice] # batch.obs: s_{t+n}
with torch.no_grad():
obs_next_result = self(batch, input='obs_next', explorating=False)
a_ = obs_next_result.act
batch.act = to_torch_as(batch.act, a_)
target_q = torch.min(
self.critic1_old(batch.obs_next, a_),
self.critic2_old(batch.obs_next, a_),
) - self._alpha * obs_next_result.log_prob
return target_q
def learn(self, batch: Batch, **kwargs) -> Dict[str, float]:
weight = batch.pop('weight', 1.)
# critic 1
current_q1 = self.critic1(batch.obs, batch.act).flatten()
target_q = batch.returns.flatten()
td1 = current_q1 - target_q
critic1_loss = (td1.pow(2) * weight).mean()
# critic1_loss = F.mse_loss(current_q1, target_q)
self.critic1_optim.zero_grad()
critic1_loss.backward()
self.critic1_optim.step()
# critic 2
current_q2 = self.critic2(batch.obs, batch.act).flatten()
td2 = current_q2 - target_q
critic2_loss = (td2.pow(2) * weight).mean()
# critic2_loss = F.mse_loss(current_q2, target_q)
self.critic2_optim.zero_grad()
critic2_loss.backward()
self.critic2_optim.step()
batch.weight = (td1 + td2) / 2. # prio-buffer
# actor
obs_result = self(batch, explorating=False)
a = obs_result.act
current_q1a = self.critic1(batch.obs, a).flatten()
current_q2a = self.critic2(batch.obs, a).flatten()
actor_loss = (self._alpha * obs_result.log_prob.flatten()
- torch.min(current_q1a, current_q2a)).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
if self._is_auto_alpha:
log_prob = obs_result.log_prob.detach() + self._target_entropy
alpha_loss = -(self._log_alpha * log_prob).mean()
self._alpha_optim.zero_grad()
alpha_loss.backward()
self._alpha_optim.step()
self._alpha = self._log_alpha.detach().exp()
self.sync_weight()
result = {
'loss/actor': actor_loss.item(),
'loss/critic1': critic1_loss.item(),
'loss/critic2': critic2_loss.item(),
}
if self._is_auto_alpha:
result['loss/alpha'] = alpha_loss.item()
result['v/alpha'] = self._alpha.item()
return result