This PR focus on refactor of logging method to solve bug of nan reward and log interval. After these two pr, hopefully fundamental change of tianshou/data is finished. We then can concentrate on building benchmarks of tianshou finally. Things changed: 1. trainer now accepts logger (BasicLogger or LazyLogger) instead of writer; 2. remove utils.SummaryWriter;
		
			
				
	
	
		
			115 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			115 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
import gym
 | 
						|
import torch
 | 
						|
import pickle
 | 
						|
import pprint
 | 
						|
import argparse
 | 
						|
import numpy as np
 | 
						|
from torch.utils.tensorboard import SummaryWriter
 | 
						|
 | 
						|
from tianshou.data import Collector
 | 
						|
from tianshou.utils import BasicLogger
 | 
						|
from tianshou.env import DummyVectorEnv
 | 
						|
from tianshou.utils.net.common import Net
 | 
						|
from tianshou.trainer import offline_trainer
 | 
						|
from tianshou.policy import DiscreteBCQPolicy
 | 
						|
 | 
						|
 | 
						|
def get_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument("--task", type=str, default="CartPole-v0")
 | 
						|
    parser.add_argument("--seed", type=int, default=1626)
 | 
						|
    parser.add_argument("--eps-test", type=float, default=0.001)
 | 
						|
    parser.add_argument("--lr", type=float, default=3e-4)
 | 
						|
    parser.add_argument("--gamma", type=float, default=0.9)
 | 
						|
    parser.add_argument("--n-step", type=int, default=3)
 | 
						|
    parser.add_argument("--target-update-freq", type=int, default=320)
 | 
						|
    parser.add_argument("--unlikely-action-threshold", type=float, default=0.3)
 | 
						|
    parser.add_argument("--imitation-logits-penalty", type=float, default=0.01)
 | 
						|
    parser.add_argument("--epoch", type=int, default=5)
 | 
						|
    parser.add_argument("--update-per-epoch", type=int, default=1000)
 | 
						|
    parser.add_argument("--batch-size", type=int, default=64)
 | 
						|
    parser.add_argument('--hidden-sizes', type=int,
 | 
						|
                        nargs='*', default=[128, 128, 128])
 | 
						|
    parser.add_argument("--test-num", type=int, default=100)
 | 
						|
    parser.add_argument("--logdir", type=str, default="log")
 | 
						|
    parser.add_argument("--render", type=float, default=0.)
 | 
						|
    parser.add_argument(
 | 
						|
        "--load-buffer-name", type=str,
 | 
						|
        default="./expert_DQN_CartPole-v0.pkl",
 | 
						|
    )
 | 
						|
    parser.add_argument(
 | 
						|
        "--device", type=str,
 | 
						|
        default="cuda" if torch.cuda.is_available() else "cpu",
 | 
						|
    )
 | 
						|
    args = parser.parse_known_args()[0]
 | 
						|
    return args
 | 
						|
 | 
						|
 | 
						|
def test_discrete_bcq(args=get_args()):
 | 
						|
    # envs
 | 
						|
    env = gym.make(args.task)
 | 
						|
    args.state_shape = env.observation_space.shape or env.observation_space.n
 | 
						|
    args.action_shape = env.action_space.shape or env.action_space.n
 | 
						|
    test_envs = DummyVectorEnv(
 | 
						|
        [lambda: gym.make(args.task) for _ in range(args.test_num)])
 | 
						|
    # seed
 | 
						|
    np.random.seed(args.seed)
 | 
						|
    torch.manual_seed(args.seed)
 | 
						|
    test_envs.seed(args.seed)
 | 
						|
    # model
 | 
						|
    policy_net = Net(
 | 
						|
        args.state_shape, args.action_shape,
 | 
						|
        hidden_sizes=args.hidden_sizes, device=args.device).to(args.device)
 | 
						|
    imitation_net = Net(
 | 
						|
        args.state_shape, args.action_shape,
 | 
						|
        hidden_sizes=args.hidden_sizes, device=args.device).to(args.device)
 | 
						|
    optim = torch.optim.Adam(
 | 
						|
        set(policy_net.parameters()).union(imitation_net.parameters()),
 | 
						|
        lr=args.lr)
 | 
						|
 | 
						|
    policy = DiscreteBCQPolicy(
 | 
						|
        policy_net, imitation_net, optim, args.gamma, args.n_step,
 | 
						|
        args.target_update_freq, args.eps_test,
 | 
						|
        args.unlikely_action_threshold, args.imitation_logits_penalty,
 | 
						|
    )
 | 
						|
    # buffer
 | 
						|
    assert os.path.exists(args.load_buffer_name), \
 | 
						|
        "Please run test_dqn.py first to get expert's data buffer."
 | 
						|
    buffer = pickle.load(open(args.load_buffer_name, "rb"))
 | 
						|
 | 
						|
    # collector
 | 
						|
    test_collector = Collector(policy, test_envs, exploration_noise=True)
 | 
						|
 | 
						|
    log_path = os.path.join(args.logdir, args.task, 'discrete_bcq')
 | 
						|
    writer = SummaryWriter(log_path)
 | 
						|
    logger = BasicLogger(writer)
 | 
						|
 | 
						|
    def save_fn(policy):
 | 
						|
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
 | 
						|
 | 
						|
    def stop_fn(mean_rewards):
 | 
						|
        return mean_rewards >= env.spec.reward_threshold
 | 
						|
 | 
						|
    result = offline_trainer(
 | 
						|
        policy, buffer, test_collector,
 | 
						|
        args.epoch, args.update_per_epoch, args.test_num, args.batch_size,
 | 
						|
        stop_fn=stop_fn, save_fn=save_fn, logger=logger)
 | 
						|
 | 
						|
    assert stop_fn(result['best_reward'])
 | 
						|
 | 
						|
    if __name__ == '__main__':
 | 
						|
        pprint.pprint(result)
 | 
						|
        # Let's watch its performance!
 | 
						|
        env = gym.make(args.task)
 | 
						|
        policy.eval()
 | 
						|
        policy.set_eps(args.eps_test)
 | 
						|
        collector = Collector(policy, env)
 | 
						|
        result = collector.collect(n_episode=1, render=args.render)
 | 
						|
        rews, lens = result["rews"], result["lens"]
 | 
						|
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    test_discrete_bcq(get_args())
 |