* Implement example mujoco_redq_hl * Add abstraction CriticEnsembleFactory with default implementations to suit REDQ * Fix type annotation of linear_layer in Net, MLP, Critic (was incompatible with REDQ usage)
607 lines
23 KiB
Python
607 lines
23 KiB
Python
from abc import ABC, abstractmethod
|
|
from collections.abc import Callable, Sequence
|
|
from typing import Any, TypeAlias, no_type_check
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
|
|
from tianshou.data.batch import Batch
|
|
from tianshou.data.types import RecurrentStateBatch
|
|
|
|
ModuleType = type[nn.Module]
|
|
ArgsType = tuple[Any, ...] | dict[Any, Any] | Sequence[tuple[Any, ...]] | Sequence[dict[Any, Any]]
|
|
TActionShape: TypeAlias = Sequence[int] | int
|
|
TLinearLayer: TypeAlias = Callable[[int, int], nn.Module]
|
|
|
|
|
|
def miniblock(
|
|
input_size: int,
|
|
output_size: int = 0,
|
|
norm_layer: ModuleType | None = None,
|
|
norm_args: tuple[Any, ...] | dict[Any, Any] | None = None,
|
|
activation: ModuleType | None = None,
|
|
act_args: tuple[Any, ...] | dict[Any, Any] | None = None,
|
|
linear_layer: type[nn.Linear] = nn.Linear,
|
|
) -> list[nn.Module]:
|
|
"""Construct a miniblock with given input/output-size, norm layer and activation."""
|
|
layers: list[nn.Module] = [linear_layer(input_size, output_size)]
|
|
if norm_layer is not None:
|
|
if isinstance(norm_args, tuple):
|
|
layers += [norm_layer(output_size, *norm_args)]
|
|
elif isinstance(norm_args, dict):
|
|
layers += [norm_layer(output_size, **norm_args)]
|
|
else:
|
|
layers += [norm_layer(output_size)]
|
|
if activation is not None:
|
|
if isinstance(act_args, tuple):
|
|
layers += [activation(*act_args)]
|
|
elif isinstance(act_args, dict):
|
|
layers += [activation(**act_args)]
|
|
else:
|
|
layers += [activation()]
|
|
return layers
|
|
|
|
|
|
class MLP(nn.Module):
|
|
"""Simple MLP backbone.
|
|
|
|
Create a MLP of size input_dim * hidden_sizes[0] * hidden_sizes[1] * ...
|
|
* hidden_sizes[-1] * output_dim
|
|
|
|
:param input_dim: dimension of the input vector.
|
|
:param output_dim: dimension of the output vector. If set to 0, there
|
|
is no final linear layer.
|
|
:param hidden_sizes: shape of MLP passed in as a list, not including
|
|
input_dim and output_dim.
|
|
:param norm_layer: use which normalization before activation, e.g.,
|
|
``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization.
|
|
You can also pass a list of normalization modules with the same length
|
|
of hidden_sizes, to use different normalization module in different
|
|
layers. Default to no normalization.
|
|
:param activation: which activation to use after each layer, can be both
|
|
the same activation for all layers if passed in nn.Module, or different
|
|
activation for different Modules if passed in a list. Default to
|
|
nn.ReLU.
|
|
:param device: which device to create this model on. Default to None.
|
|
:param linear_layer: use this module as linear layer. Default to nn.Linear.
|
|
:param flatten_input: whether to flatten input data. Default to True.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
input_dim: int,
|
|
output_dim: int = 0,
|
|
hidden_sizes: Sequence[int] = (),
|
|
norm_layer: ModuleType | Sequence[ModuleType] | None = None,
|
|
norm_args: ArgsType | None = None,
|
|
activation: ModuleType | Sequence[ModuleType] | None = nn.ReLU,
|
|
act_args: ArgsType | None = None,
|
|
device: str | int | torch.device | None = None,
|
|
linear_layer: TLinearLayer = nn.Linear,
|
|
flatten_input: bool = True,
|
|
) -> None:
|
|
super().__init__()
|
|
self.device = device
|
|
if norm_layer:
|
|
if isinstance(norm_layer, list):
|
|
assert len(norm_layer) == len(hidden_sizes)
|
|
norm_layer_list = norm_layer
|
|
if isinstance(norm_args, list):
|
|
assert len(norm_args) == len(hidden_sizes)
|
|
norm_args_list = norm_args
|
|
else:
|
|
norm_args_list = [norm_args for _ in range(len(hidden_sizes))]
|
|
else:
|
|
norm_layer_list = [norm_layer for _ in range(len(hidden_sizes))]
|
|
norm_args_list = [norm_args for _ in range(len(hidden_sizes))]
|
|
else:
|
|
norm_layer_list = [None] * len(hidden_sizes)
|
|
norm_args_list = [None] * len(hidden_sizes)
|
|
if activation:
|
|
if isinstance(activation, list):
|
|
assert len(activation) == len(hidden_sizes)
|
|
activation_list = activation
|
|
if isinstance(act_args, list):
|
|
assert len(act_args) == len(hidden_sizes)
|
|
act_args_list = act_args
|
|
else:
|
|
act_args_list = [act_args for _ in range(len(hidden_sizes))]
|
|
else:
|
|
activation_list = [activation for _ in range(len(hidden_sizes))]
|
|
act_args_list = [act_args for _ in range(len(hidden_sizes))]
|
|
else:
|
|
activation_list = [None] * len(hidden_sizes)
|
|
act_args_list = [None] * len(hidden_sizes)
|
|
hidden_sizes = [input_dim, *list(hidden_sizes)]
|
|
model = []
|
|
for in_dim, out_dim, norm, norm_args, activ, act_args in zip(
|
|
hidden_sizes[:-1],
|
|
hidden_sizes[1:],
|
|
norm_layer_list,
|
|
norm_args_list,
|
|
activation_list,
|
|
act_args_list,
|
|
strict=True,
|
|
):
|
|
model += miniblock(in_dim, out_dim, norm, norm_args, activ, act_args, linear_layer)
|
|
if output_dim > 0:
|
|
model += [linear_layer(hidden_sizes[-1], output_dim)]
|
|
self.output_dim = output_dim or hidden_sizes[-1]
|
|
self.model = nn.Sequential(*model)
|
|
self.flatten_input = flatten_input
|
|
|
|
@no_type_check
|
|
def forward(self, obs: np.ndarray | torch.Tensor) -> torch.Tensor:
|
|
obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32)
|
|
if self.flatten_input:
|
|
obs = obs.flatten(1)
|
|
return self.model(obs)
|
|
|
|
|
|
class NetBase(nn.Module, ABC):
|
|
"""Interface for NNs used in policies."""
|
|
|
|
@abstractmethod
|
|
def forward(
|
|
self,
|
|
obs: np.ndarray | torch.Tensor,
|
|
state: Any = None,
|
|
**kwargs: Any,
|
|
) -> tuple[torch.Tensor, Any]:
|
|
pass
|
|
|
|
|
|
class Net(NetBase):
|
|
"""Wrapper of MLP to support more specific DRL usage.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
|
|
:param state_shape: int or a sequence of int of the shape of state.
|
|
:param action_shape: int or a sequence of int of the shape of action.
|
|
:param hidden_sizes: shape of MLP passed in as a list.
|
|
:param norm_layer: use which normalization before activation, e.g.,
|
|
``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization.
|
|
You can also pass a list of normalization modules with the same length
|
|
of hidden_sizes, to use different normalization module in different
|
|
layers. Default to no normalization.
|
|
:param activation: which activation to use after each layer, can be both
|
|
the same activation for all layers if passed in nn.Module, or different
|
|
activation for different Modules if passed in a list. Default to
|
|
nn.ReLU.
|
|
:param device: specify the device when the network actually runs. Default
|
|
to "cpu".
|
|
:param softmax: whether to apply a softmax layer over the last layer's
|
|
output.
|
|
:param concat: whether the input shape is concatenated by state_shape
|
|
and action_shape. If it is True, ``action_shape`` is not the output
|
|
shape, but affects the input shape only.
|
|
:param num_atoms: in order to expand to the net of distributional RL.
|
|
Default to 1 (not use).
|
|
:param dueling_param: whether to use dueling network to calculate Q
|
|
values (for Dueling DQN). If you want to use dueling option, you should
|
|
pass a tuple of two dict (first for Q and second for V) stating
|
|
self-defined arguments as stated in
|
|
class:`~tianshou.utils.net.common.MLP`. Default to None.
|
|
:param linear_layer: use this module constructor, which takes the input
|
|
and output dimension as input, as linear layer. Default to nn.Linear.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.utils.net.common.MLP` for more
|
|
detailed explanation on the usage of activation, norm_layer, etc.
|
|
|
|
You can also refer to :class:`~tianshou.utils.net.continuous.Actor`,
|
|
:class:`~tianshou.utils.net.continuous.Critic`, etc, to see how it's
|
|
suggested be used.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
state_shape: int | Sequence[int],
|
|
action_shape: int | Sequence[int] = 0,
|
|
hidden_sizes: Sequence[int] = (),
|
|
norm_layer: ModuleType | Sequence[ModuleType] | None = None,
|
|
norm_args: ArgsType | None = None,
|
|
activation: ModuleType | Sequence[ModuleType] | None = nn.ReLU,
|
|
act_args: ArgsType | None = None,
|
|
device: str | int | torch.device = "cpu",
|
|
softmax: bool = False,
|
|
concat: bool = False,
|
|
num_atoms: int = 1,
|
|
dueling_param: tuple[dict[str, Any], dict[str, Any]] | None = None,
|
|
linear_layer: TLinearLayer = nn.Linear,
|
|
) -> None:
|
|
super().__init__()
|
|
self.device = device
|
|
self.softmax = softmax
|
|
self.num_atoms = num_atoms
|
|
self.Q: MLP | None = None
|
|
self.V: MLP | None = None
|
|
|
|
input_dim = int(np.prod(state_shape))
|
|
action_dim = int(np.prod(action_shape)) * num_atoms
|
|
if concat:
|
|
input_dim += action_dim
|
|
self.use_dueling = dueling_param is not None
|
|
output_dim = action_dim if not self.use_dueling and not concat else 0
|
|
self.model = MLP(
|
|
input_dim,
|
|
output_dim,
|
|
hidden_sizes,
|
|
norm_layer,
|
|
norm_args,
|
|
activation,
|
|
act_args,
|
|
device,
|
|
linear_layer,
|
|
)
|
|
if self.use_dueling: # dueling DQN
|
|
assert dueling_param is not None
|
|
kwargs_update = {
|
|
"input_dim": self.model.output_dim,
|
|
"device": self.device,
|
|
}
|
|
# Important: don't change the original dict (e.g., don't use .update())
|
|
q_kwargs = {**dueling_param[0], **kwargs_update}
|
|
v_kwargs = {**dueling_param[1], **kwargs_update}
|
|
|
|
q_kwargs["output_dim"] = 0 if concat else action_dim
|
|
v_kwargs["output_dim"] = 0 if concat else num_atoms
|
|
self.Q, self.V = MLP(**q_kwargs), MLP(**v_kwargs)
|
|
self.output_dim = self.Q.output_dim
|
|
else:
|
|
self.output_dim = self.model.output_dim
|
|
|
|
def forward(
|
|
self,
|
|
obs: np.ndarray | torch.Tensor,
|
|
state: Any = None,
|
|
**kwargs: Any,
|
|
) -> tuple[torch.Tensor, Any]:
|
|
"""Mapping: obs -> flatten (inside MLP)-> logits.
|
|
|
|
:param obs:
|
|
:param state: unused and returned as is
|
|
:param kwargs: unused
|
|
"""
|
|
logits = self.model(obs)
|
|
batch_size = logits.shape[0]
|
|
if self.use_dueling: # Dueling DQN
|
|
assert self.Q is not None
|
|
assert self.V is not None
|
|
q, v = self.Q(logits), self.V(logits)
|
|
if self.num_atoms > 1:
|
|
q = q.view(batch_size, -1, self.num_atoms)
|
|
v = v.view(batch_size, -1, self.num_atoms)
|
|
logits = q - q.mean(dim=1, keepdim=True) + v
|
|
elif self.num_atoms > 1:
|
|
logits = logits.view(batch_size, -1, self.num_atoms)
|
|
if self.softmax:
|
|
logits = torch.softmax(logits, dim=-1)
|
|
return logits, state
|
|
|
|
|
|
class Recurrent(NetBase):
|
|
"""Simple Recurrent network based on LSTM.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
layer_num: int,
|
|
state_shape: int | Sequence[int],
|
|
action_shape: int | Sequence[int],
|
|
device: str | int | torch.device = "cpu",
|
|
hidden_layer_size: int = 128,
|
|
) -> None:
|
|
super().__init__()
|
|
self.device = device
|
|
self.nn = nn.LSTM(
|
|
input_size=hidden_layer_size,
|
|
hidden_size=hidden_layer_size,
|
|
num_layers=layer_num,
|
|
batch_first=True,
|
|
)
|
|
self.fc1 = nn.Linear(int(np.prod(state_shape)), hidden_layer_size)
|
|
self.fc2 = nn.Linear(hidden_layer_size, int(np.prod(action_shape)))
|
|
|
|
def forward(
|
|
self,
|
|
obs: np.ndarray | torch.Tensor,
|
|
state: RecurrentStateBatch | dict[str, torch.Tensor] | None = None,
|
|
**kwargs: Any,
|
|
) -> tuple[torch.Tensor, dict[str, torch.Tensor]]:
|
|
"""Mapping: obs -> flatten -> logits.
|
|
|
|
In the evaluation mode, `obs` should be with shape ``[bsz, dim]``; in the
|
|
training mode, `obs` should be with shape ``[bsz, len, dim]``. See the code
|
|
and comment for more detail.
|
|
|
|
:param obs:
|
|
:param state: either None or a dict with keys 'hidden' and 'cell'
|
|
:param kwargs: unused
|
|
:return: predicted action, next state as dict with keys 'hidden' and 'cell'
|
|
"""
|
|
# Note: the original type of state is Batch but it might also be a dict
|
|
# If it is a Batch, .issubset(state) will not work. However,
|
|
# issubset(state.keys()) always works
|
|
if state is not None and not {"hidden", "cell"}.issubset(state.keys()):
|
|
raise ValueError(
|
|
f"Expected to find keys 'hidden' and 'cell' but instead found {state.keys()}",
|
|
)
|
|
|
|
obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32)
|
|
# obs [bsz, len, dim] (training) or [bsz, dim] (evaluation)
|
|
# In short, the tensor's shape in training phase is longer than which
|
|
# in evaluation phase.
|
|
if len(obs.shape) == 2:
|
|
obs = obs.unsqueeze(-2)
|
|
obs = self.fc1(obs)
|
|
self.nn.flatten_parameters()
|
|
if state is None:
|
|
obs, (hidden, cell) = self.nn(obs)
|
|
else:
|
|
# we store the stack data in [bsz, len, ...] format
|
|
# but pytorch rnn needs [len, bsz, ...]
|
|
obs, (hidden, cell) = self.nn(
|
|
obs,
|
|
(
|
|
state["hidden"].transpose(0, 1).contiguous(),
|
|
state["cell"].transpose(0, 1).contiguous(),
|
|
),
|
|
)
|
|
obs = self.fc2(obs[:, -1])
|
|
# please ensure the first dim is batch size: [bsz, len, ...]
|
|
return obs, {
|
|
"hidden": hidden.transpose(0, 1).detach(),
|
|
"cell": cell.transpose(0, 1).detach(),
|
|
}
|
|
|
|
|
|
class ActorCritic(nn.Module):
|
|
"""An actor-critic network for parsing parameters.
|
|
|
|
Using ``actor_critic.parameters()`` instead of set.union or list+list to avoid
|
|
issue #449.
|
|
|
|
:param nn.Module actor: the actor network.
|
|
:param nn.Module critic: the critic network.
|
|
"""
|
|
|
|
def __init__(self, actor: nn.Module, critic: nn.Module) -> None:
|
|
super().__init__()
|
|
self.actor = actor
|
|
self.critic = critic
|
|
|
|
|
|
class DataParallelNet(nn.Module):
|
|
"""DataParallel wrapper for training agent with multi-GPU.
|
|
|
|
This class does only the conversion of input data type, from numpy array to torch's
|
|
Tensor. If the input is a nested dictionary, the user should create a similar class
|
|
to do the same thing.
|
|
|
|
:param nn.Module net: the network to be distributed in different GPUs.
|
|
"""
|
|
|
|
def __init__(self, net: nn.Module) -> None:
|
|
super().__init__()
|
|
self.net = nn.DataParallel(net)
|
|
|
|
def forward(
|
|
self,
|
|
obs: np.ndarray | torch.Tensor,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> tuple[Any, Any]:
|
|
if not isinstance(obs, torch.Tensor):
|
|
obs = torch.as_tensor(obs, dtype=torch.float32)
|
|
return self.net(obs=obs.cuda(), *args, **kwargs) # noqa: B026
|
|
|
|
|
|
class EnsembleLinear(nn.Module):
|
|
"""Linear Layer of Ensemble network.
|
|
|
|
:param ensemble_size: Number of subnets in the ensemble.
|
|
:param in_feature: dimension of the input vector.
|
|
:param out_feature: dimension of the output vector.
|
|
:param bias: whether to include an additive bias, default to be True.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
ensemble_size: int,
|
|
in_feature: int,
|
|
out_feature: int,
|
|
bias: bool = True,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
# To be consistent with PyTorch default initializer
|
|
k = np.sqrt(1.0 / in_feature)
|
|
weight_data = torch.rand((ensemble_size, in_feature, out_feature)) * 2 * k - k
|
|
self.weight = nn.Parameter(weight_data, requires_grad=True)
|
|
|
|
self.bias_weights: nn.Parameter | None = None
|
|
if bias:
|
|
bias_data = torch.rand((ensemble_size, 1, out_feature)) * 2 * k - k
|
|
self.bias_weights = nn.Parameter(bias_data, requires_grad=True)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = torch.matmul(x, self.weight)
|
|
if self.bias_weights is not None:
|
|
x = x + self.bias_weights
|
|
return x
|
|
|
|
|
|
class BranchingNet(NetBase):
|
|
"""Branching dual Q network.
|
|
|
|
Network for the BranchingDQNPolicy, it uses a common network module, a value module
|
|
and action "branches" one for each dimension.It allows for a linear scaling
|
|
of Q-value the output w.r.t. the number of dimensions in the action space.
|
|
For more info please refer to: arXiv:1711.08946.
|
|
:param state_shape: int or a sequence of int of the shape of state.
|
|
:param action_shape: int or a sequence of int of the shape of action.
|
|
:param action_peer_branch: int or a sequence of int of the number of actions in
|
|
each dimension.
|
|
:param common_hidden_sizes: shape of the common MLP network passed in as a list.
|
|
:param value_hidden_sizes: shape of the value MLP network passed in as a list.
|
|
:param action_hidden_sizes: shape of the action MLP network passed in as a list.
|
|
:param norm_layer: use which normalization before activation, e.g.,
|
|
``nn.LayerNorm`` and ``nn.BatchNorm1d``. Default to no normalization.
|
|
You can also pass a list of normalization modules with the same length
|
|
of hidden_sizes, to use different normalization module in different
|
|
layers. Default to no normalization.
|
|
:param activation: which activation to use after each layer, can be both
|
|
the same activation for all layers if passed in nn.Module, or different
|
|
activation for different Modules if passed in a list. Default to
|
|
nn.ReLU.
|
|
:param device: specify the device when the network actually runs. Default
|
|
to "cpu".
|
|
:param softmax: whether to apply a softmax layer over the last layer's
|
|
output.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
state_shape: int | Sequence[int],
|
|
num_branches: int = 0,
|
|
action_per_branch: int = 2,
|
|
common_hidden_sizes: list[int] | None = None,
|
|
value_hidden_sizes: list[int] | None = None,
|
|
action_hidden_sizes: list[int] | None = None,
|
|
norm_layer: ModuleType | None = None,
|
|
norm_args: ArgsType | None = None,
|
|
activation: ModuleType | None = nn.ReLU,
|
|
act_args: ArgsType | None = None,
|
|
device: str | int | torch.device = "cpu",
|
|
) -> None:
|
|
super().__init__()
|
|
common_hidden_sizes = common_hidden_sizes or []
|
|
value_hidden_sizes = value_hidden_sizes or []
|
|
action_hidden_sizes = action_hidden_sizes or []
|
|
|
|
self.device = device
|
|
self.num_branches = num_branches
|
|
self.action_per_branch = action_per_branch
|
|
# common network
|
|
common_input_dim = int(np.prod(state_shape))
|
|
common_output_dim = 0
|
|
self.common = MLP(
|
|
common_input_dim,
|
|
common_output_dim,
|
|
common_hidden_sizes,
|
|
norm_layer,
|
|
norm_args,
|
|
activation,
|
|
act_args,
|
|
device,
|
|
)
|
|
# value network
|
|
value_input_dim = common_hidden_sizes[-1]
|
|
value_output_dim = 1
|
|
self.value = MLP(
|
|
value_input_dim,
|
|
value_output_dim,
|
|
value_hidden_sizes,
|
|
norm_layer,
|
|
norm_args,
|
|
activation,
|
|
act_args,
|
|
device,
|
|
)
|
|
# action branching network
|
|
action_input_dim = common_hidden_sizes[-1]
|
|
action_output_dim = action_per_branch
|
|
self.branches = nn.ModuleList(
|
|
[
|
|
MLP(
|
|
action_input_dim,
|
|
action_output_dim,
|
|
action_hidden_sizes,
|
|
norm_layer,
|
|
norm_args,
|
|
activation,
|
|
act_args,
|
|
device,
|
|
)
|
|
for _ in range(self.num_branches)
|
|
],
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
obs: np.ndarray | torch.Tensor,
|
|
state: Any = None,
|
|
**kwargs: Any,
|
|
) -> tuple[torch.Tensor, Any]:
|
|
"""Mapping: obs -> model -> logits."""
|
|
common_out = self.common(obs)
|
|
value_out = self.value(common_out)
|
|
value_out = torch.unsqueeze(value_out, 1)
|
|
action_out = []
|
|
for b in self.branches:
|
|
action_out.append(b(common_out))
|
|
action_scores = torch.stack(action_out, 1)
|
|
action_scores = action_scores - torch.mean(action_scores, 2, keepdim=True)
|
|
logits = value_out + action_scores
|
|
return logits, state
|
|
|
|
|
|
def get_dict_state_decorator(
|
|
state_shape: dict[str, int | Sequence[int]],
|
|
keys: Sequence[str],
|
|
) -> tuple[Callable, int]:
|
|
"""A helper function to make Net or equivalent classes (e.g. Actor, Critic) applicable to dict state.
|
|
|
|
The first return item, ``decorator_fn``, will alter the implementation of forward
|
|
function of the given class by preprocessing the observation. The preprocessing is
|
|
basically flatten the observation and concatenate them based on the ``keys`` order.
|
|
The batch dimension is preserved if presented. The result observation shape will
|
|
be equal to ``new_state_shape``, the second return item.
|
|
|
|
:param state_shape: A dictionary indicating each state's shape
|
|
:param keys: A list of state's keys. The flatten observation will be according to
|
|
this list order.
|
|
:returns: a 2-items tuple ``decorator_fn`` and ``new_state_shape``
|
|
"""
|
|
original_shape = state_shape
|
|
flat_state_shapes = []
|
|
for k in keys:
|
|
flat_state_shapes.append(int(np.prod(state_shape[k])))
|
|
new_state_shape = sum(flat_state_shapes)
|
|
|
|
def preprocess_obs(obs: Batch | dict | torch.Tensor | np.ndarray) -> torch.Tensor:
|
|
if isinstance(obs, dict) or (isinstance(obs, Batch) and keys[0] in obs):
|
|
if original_shape[keys[0]] == obs[keys[0]].shape:
|
|
# No batch dim
|
|
new_obs = torch.Tensor([obs[k] for k in keys]).flatten()
|
|
# new_obs = torch.Tensor([obs[k] for k in keys]).reshape(1, -1)
|
|
else:
|
|
bsz = obs[keys[0]].shape[0]
|
|
new_obs = torch.cat([torch.Tensor(obs[k].reshape(bsz, -1)) for k in keys], dim=1)
|
|
else:
|
|
new_obs = torch.Tensor(obs)
|
|
return new_obs
|
|
|
|
@no_type_check
|
|
def decorator_fn(net_class):
|
|
class new_net_class(net_class):
|
|
def forward(self, obs: np.ndarray | torch.Tensor, *args, **kwargs) -> Any:
|
|
return super().forward(preprocess_obs(obs), *args, **kwargs)
|
|
|
|
return new_net_class
|
|
|
|
return decorator_fn, new_state_shape
|
|
|
|
|
|
class BaseActor(nn.Module, ABC):
|
|
@abstractmethod
|
|
def get_preprocess_net(self) -> nn.Module:
|
|
pass
|