Tianshou/examples/atari/atari_sac.py
Daniel Plop eb0215cf76
Refactoring/mypy issues test (#1017)
Improves typing in examples and tests, towards mypy passing there.

Introduces the SpaceInfo utility
2024-02-06 14:24:30 +01:00

271 lines
10 KiB
Python

import argparse
import datetime
import os
import pprint
import sys
import numpy as np
import torch
from atari_network import DQN
from atari_wrapper import make_atari_env
from examples.common import logger_factory
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import DiscreteSACPolicy, ICMPolicy
from tianshou.policy.base import BasePolicy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils.net.discrete import Actor, Critic, IntrinsicCuriosityModule
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="PongNoFrameskip-v4")
parser.add_argument("--seed", type=int, default=4213)
parser.add_argument("--scale-obs", type=int, default=0)
parser.add_argument("--buffer-size", type=int, default=100000)
parser.add_argument("--actor-lr", type=float, default=1e-5)
parser.add_argument("--critic-lr", type=float, default=1e-5)
parser.add_argument("--gamma", type=float, default=0.99)
parser.add_argument("--n-step", type=int, default=3)
parser.add_argument("--tau", type=float, default=0.005)
parser.add_argument("--alpha", type=float, default=0.05)
parser.add_argument("--auto-alpha", action="store_true", default=False)
parser.add_argument("--alpha-lr", type=float, default=3e-4)
parser.add_argument("--epoch", type=int, default=100)
parser.add_argument("--step-per-epoch", type=int, default=100000)
parser.add_argument("--step-per-collect", type=int, default=10)
parser.add_argument("--update-per-step", type=float, default=0.1)
parser.add_argument("--batch-size", type=int, default=64)
parser.add_argument("--hidden-size", type=int, default=512)
parser.add_argument("--training-num", type=int, default=10)
parser.add_argument("--test-num", type=int, default=10)
parser.add_argument("--rew-norm", type=int, default=False)
parser.add_argument("--logdir", type=str, default="log")
parser.add_argument("--render", type=float, default=0.0)
parser.add_argument(
"--device",
type=str,
default="cuda" if torch.cuda.is_available() else "cpu",
)
parser.add_argument("--frames-stack", type=int, default=4)
parser.add_argument("--resume-path", type=str, default=None)
parser.add_argument("--resume-id", type=str, default=None)
parser.add_argument(
"--logger",
type=str,
default="tensorboard",
choices=["tensorboard", "wandb"],
)
parser.add_argument("--wandb-project", type=str, default="atari.benchmark")
parser.add_argument(
"--watch",
default=False,
action="store_true",
help="watch the play of pre-trained policy only",
)
parser.add_argument("--save-buffer-name", type=str, default=None)
parser.add_argument(
"--icm-lr-scale",
type=float,
default=0.0,
help="use intrinsic curiosity module with this lr scale",
)
parser.add_argument(
"--icm-reward-scale",
type=float,
default=0.01,
help="scaling factor for intrinsic curiosity reward",
)
parser.add_argument(
"--icm-forward-loss-weight",
type=float,
default=0.2,
help="weight for the forward model loss in ICM",
)
return parser.parse_args()
def test_discrete_sac(args: argparse.Namespace = get_args()) -> None:
env, train_envs, test_envs = make_atari_env(
args.task,
args.seed,
args.training_num,
args.test_num,
scale=args.scale_obs,
frame_stack=args.frames_stack,
)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# should be N_FRAMES x H x W
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
# define model
net = DQN(
*args.state_shape,
args.action_shape,
device=args.device,
features_only=True,
output_dim=args.hidden_size,
)
actor = Actor(net, args.action_shape, device=args.device, softmax_output=False)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic1 = Critic(net, last_size=args.action_shape, device=args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(net, last_size=args.action_shape, device=args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
# define policy
if args.auto_alpha:
target_entropy = 0.98 * np.log(np.prod(args.action_shape))
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy: DiscreteSACPolicy = DiscreteSACPolicy(
actor=actor,
actor_optim=actor_optim,
critic=critic1,
critic_optim=critic1_optim,
critic2=critic2,
critic2_optim=critic2_optim,
action_space=env.action_space,
tau=args.tau,
gamma=args.gamma,
alpha=args.alpha,
estimation_step=args.n_step,
).to(args.device)
if args.icm_lr_scale > 0:
feature_net = DQN(*args.state_shape, args.action_shape, args.device, features_only=True)
action_dim = np.prod(args.action_shape)
feature_dim = feature_net.output_dim
icm_net = IntrinsicCuriosityModule(
feature_net.net,
feature_dim,
action_dim,
hidden_sizes=[args.hidden_size],
device=args.device,
)
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.actor_lr)
policy = ICMPolicy(
policy=policy,
model=icm_net,
optim=icm_optim,
action_space=env.action_space,
lr_scale=args.icm_lr_scale,
reward_scale=args.icm_reward_scale,
forward_loss_weight=args.icm_forward_loss_weight,
).to(args.device)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
print("Loaded agent from: ", args.resume_path)
# replay buffer: `save_last_obs` and `stack_num` can be removed together
# when you have enough RAM
buffer = VectorReplayBuffer(
args.buffer_size,
buffer_num=len(train_envs),
ignore_obs_next=True,
save_only_last_obs=True,
stack_num=args.frames_stack,
)
# collector
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# log
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
args.algo_name = "discrete_sac_icm" if args.icm_lr_scale > 0 else "discrete_sac"
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
log_path = os.path.join(args.logdir, log_name)
# logger
if args.logger == "wandb":
logger_factory.logger_type = "wandb"
logger_factory.wandb_project = args.wandb_project
else:
logger_factory.logger_type = "tensorboard"
logger = logger_factory.create_logger(
log_dir=log_path,
experiment_name=log_name,
run_id=args.resume_id,
config_dict=vars(args),
)
def save_best_fn(policy: BasePolicy) -> None:
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
def stop_fn(mean_rewards: float) -> bool:
if env.spec.reward_threshold:
return mean_rewards >= env.spec.reward_threshold
if "Pong" in args.task:
return mean_rewards >= 20
return False
def save_checkpoint_fn(epoch: int, env_step: int, gradient_step: int) -> str:
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
ckpt_path = os.path.join(log_path, "checkpoint.pth")
torch.save({"model": policy.state_dict()}, ckpt_path)
return ckpt_path
# watch agent's performance
def watch() -> None:
print("Setup test envs ...")
policy.eval()
test_envs.seed(args.seed)
if args.save_buffer_name:
print(f"Generate buffer with size {args.buffer_size}")
buffer = VectorReplayBuffer(
args.buffer_size,
buffer_num=len(test_envs),
ignore_obs_next=True,
save_only_last_obs=True,
stack_num=args.frames_stack,
)
collector = Collector(policy, test_envs, buffer, exploration_noise=True)
result = collector.collect(n_step=args.buffer_size)
print(f"Save buffer into {args.save_buffer_name}")
# Unfortunately, pickle will cause oom with 1M buffer size
buffer.save_hdf5(args.save_buffer_name)
else:
print("Testing agent ...")
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
rew = result.returns_stat.mean
print(f"Mean reward (over {result['n/ep']} episodes): {rew}")
if args.watch:
watch()
sys.exit(0)
# test train_collector and start filling replay buffer
train_collector.collect(n_step=args.batch_size * args.training_num)
# trainer
result = OffpolicyTrainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=args.epoch,
step_per_epoch=args.step_per_epoch,
step_per_collect=args.step_per_collect,
episode_per_test=args.test_num,
batch_size=args.batch_size,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
update_per_step=args.update_per_step,
test_in_train=False,
resume_from_log=args.resume_id is not None,
save_checkpoint_fn=save_checkpoint_fn,
).run()
pprint.pprint(result)
watch()
if __name__ == "__main__":
test_discrete_sac(get_args())