Change the behavior of to_numpy and to_torch: from now on, dict is automatically converted to Batch and list is automatically converted to np.ndarray (if an error occurs, raise the exception instead of converting each element in the list).
325 lines
12 KiB
Python
325 lines
12 KiB
Python
import torch
|
|
import numpy as np
|
|
from torch import nn
|
|
from typing import Any, Dict, Tuple, Union, Optional, Sequence
|
|
|
|
from tianshou.utils.net.common import MLP
|
|
|
|
|
|
SIGMA_MIN = -20
|
|
SIGMA_MAX = 2
|
|
|
|
|
|
class Actor(nn.Module):
|
|
"""Simple actor network. Will create an actor operated in continuous \
|
|
action space with structure of preprocess_net ---> action_shape.
|
|
|
|
:param preprocess_net: a self-defined preprocess_net which output a
|
|
flattened hidden state.
|
|
:param action_shape: a sequence of int for the shape of action.
|
|
:param hidden_sizes: a sequence of int for constructing the MLP after
|
|
preprocess_net. Default to empty sequence (where the MLP now contains
|
|
only a single linear layer).
|
|
:param float max_action: the scale for the final action logits. Default to
|
|
1.
|
|
:param int preprocess_net_output_dim: the output dimension of
|
|
preprocess_net.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.utils.net.common.Net` as an instance
|
|
of how preprocess_net is suggested to be defined.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
preprocess_net: nn.Module,
|
|
action_shape: Sequence[int],
|
|
hidden_sizes: Sequence[int] = (),
|
|
max_action: float = 1.0,
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
preprocess_net_output_dim: Optional[int] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.device = device
|
|
self.preprocess = preprocess_net
|
|
self.output_dim = int(np.prod(action_shape))
|
|
input_dim = getattr(preprocess_net, "output_dim",
|
|
preprocess_net_output_dim)
|
|
self.last = MLP(input_dim, self.output_dim,
|
|
hidden_sizes, device=self.device)
|
|
self._max = max_action
|
|
|
|
def forward(
|
|
self,
|
|
s: Union[np.ndarray, torch.Tensor],
|
|
state: Any = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> Tuple[torch.Tensor, Any]:
|
|
"""Mapping: s -> logits -> action."""
|
|
logits, h = self.preprocess(s, state)
|
|
logits = self._max * torch.tanh(self.last(logits))
|
|
return logits, h
|
|
|
|
|
|
class Critic(nn.Module):
|
|
"""Simple critic network. Will create an actor operated in continuous \
|
|
action space with structure of preprocess_net ---> 1(q value).
|
|
|
|
:param preprocess_net: a self-defined preprocess_net which output a
|
|
flattened hidden state.
|
|
:param hidden_sizes: a sequence of int for constructing the MLP after
|
|
preprocess_net. Default to empty sequence (where the MLP now contains
|
|
only a single linear layer).
|
|
:param int preprocess_net_output_dim: the output dimension of
|
|
preprocess_net.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.utils.net.common.Net` as an instance
|
|
of how preprocess_net is suggested to be defined.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
preprocess_net: nn.Module,
|
|
hidden_sizes: Sequence[int] = (),
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
preprocess_net_output_dim: Optional[int] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.device = device
|
|
self.preprocess = preprocess_net
|
|
self.output_dim = 1
|
|
input_dim = getattr(preprocess_net, "output_dim",
|
|
preprocess_net_output_dim)
|
|
self.last = MLP(input_dim, 1, hidden_sizes, device=self.device)
|
|
|
|
def forward(
|
|
self,
|
|
s: Union[np.ndarray, torch.Tensor],
|
|
a: Optional[Union[np.ndarray, torch.Tensor]] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> torch.Tensor:
|
|
"""Mapping: (s, a) -> logits -> Q(s, a)."""
|
|
s = torch.as_tensor(
|
|
s, device=self.device, dtype=torch.float32 # type: ignore
|
|
).flatten(1)
|
|
if a is not None:
|
|
a = torch.as_tensor(
|
|
a, device=self.device, dtype=torch.float32 # type: ignore
|
|
).flatten(1)
|
|
s = torch.cat([s, a], dim=1)
|
|
logits, h = self.preprocess(s)
|
|
logits = self.last(logits)
|
|
return logits
|
|
|
|
|
|
class ActorProb(nn.Module):
|
|
"""Simple actor network (output with a Gauss distribution).
|
|
|
|
:param preprocess_net: a self-defined preprocess_net which output a
|
|
flattened hidden state.
|
|
:param action_shape: a sequence of int for the shape of action.
|
|
:param hidden_sizes: a sequence of int for constructing the MLP after
|
|
preprocess_net. Default to empty sequence (where the MLP now contains
|
|
only a single linear layer).
|
|
:param float max_action: the scale for the final action logits. Default to
|
|
1.
|
|
:param bool unbounded: whether to apply tanh activation on final logits.
|
|
Default to False.
|
|
:param bool conditioned_sigma: True when sigma is calculated from the
|
|
input, False when sigma is an independent parameter. Default to False.
|
|
:param int preprocess_net_output_dim: the output dimension of
|
|
preprocess_net.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.utils.net.common.Net` as an instance
|
|
of how preprocess_net is suggested to be defined.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
preprocess_net: nn.Module,
|
|
action_shape: Sequence[int],
|
|
hidden_sizes: Sequence[int] = (),
|
|
max_action: float = 1.0,
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
unbounded: bool = False,
|
|
conditioned_sigma: bool = False,
|
|
preprocess_net_output_dim: Optional[int] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
self.preprocess = preprocess_net
|
|
self.device = device
|
|
self.output_dim = int(np.prod(action_shape))
|
|
input_dim = getattr(preprocess_net, "output_dim",
|
|
preprocess_net_output_dim)
|
|
self.mu = MLP(input_dim, self.output_dim,
|
|
hidden_sizes, device=self.device)
|
|
self._c_sigma = conditioned_sigma
|
|
if conditioned_sigma:
|
|
self.sigma = MLP(input_dim, self.output_dim,
|
|
hidden_sizes, device=self.device)
|
|
else:
|
|
self.sigma_param = nn.Parameter(torch.zeros(self.output_dim, 1))
|
|
self._max = max_action
|
|
self._unbounded = unbounded
|
|
|
|
def forward(
|
|
self,
|
|
s: Union[np.ndarray, torch.Tensor],
|
|
state: Any = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], Any]:
|
|
"""Mapping: s -> logits -> (mu, sigma)."""
|
|
logits, h = self.preprocess(s, state)
|
|
mu = self.mu(logits)
|
|
if not self._unbounded:
|
|
mu = self._max * torch.tanh(mu)
|
|
if self._c_sigma:
|
|
sigma = torch.clamp(
|
|
self.sigma(logits), min=SIGMA_MIN, max=SIGMA_MAX
|
|
).exp()
|
|
else:
|
|
shape = [1] * len(mu.shape)
|
|
shape[1] = -1
|
|
sigma = (self.sigma_param.view(shape) + torch.zeros_like(mu)).exp()
|
|
return (mu, sigma), state
|
|
|
|
|
|
class RecurrentActorProb(nn.Module):
|
|
"""Recurrent version of ActorProb.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
layer_num: int,
|
|
state_shape: Sequence[int],
|
|
action_shape: Sequence[int],
|
|
hidden_layer_size: int = 128,
|
|
max_action: float = 1.0,
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
unbounded: bool = False,
|
|
conditioned_sigma: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.device = device
|
|
self.nn = nn.LSTM(
|
|
input_size=int(np.prod(state_shape)),
|
|
hidden_size=hidden_layer_size,
|
|
num_layers=layer_num,
|
|
batch_first=True,
|
|
)
|
|
output_dim = int(np.prod(action_shape))
|
|
self.mu = nn.Linear(hidden_layer_size, output_dim)
|
|
self._c_sigma = conditioned_sigma
|
|
if conditioned_sigma:
|
|
self.sigma = nn.Linear(hidden_layer_size, output_dim)
|
|
else:
|
|
self.sigma_param = nn.Parameter(torch.zeros(output_dim, 1))
|
|
self._max = max_action
|
|
self._unbounded = unbounded
|
|
|
|
def forward(
|
|
self,
|
|
s: Union[np.ndarray, torch.Tensor],
|
|
state: Optional[Dict[str, torch.Tensor]] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], Dict[str, torch.Tensor]]:
|
|
"""Almost the same as :class:`~tianshou.utils.net.common.Recurrent`."""
|
|
s = torch.as_tensor(
|
|
s, device=self.device, dtype=torch.float32) # type: ignore
|
|
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
|
|
# In short, the tensor's shape in training phase is longer than which
|
|
# in evaluation phase.
|
|
if len(s.shape) == 2:
|
|
s = s.unsqueeze(-2)
|
|
self.nn.flatten_parameters()
|
|
if state is None:
|
|
s, (h, c) = self.nn(s)
|
|
else:
|
|
# we store the stack data in [bsz, len, ...] format
|
|
# but pytorch rnn needs [len, bsz, ...]
|
|
s, (h, c) = self.nn(s, (state["h"].transpose(0, 1).contiguous(),
|
|
state["c"].transpose(0, 1).contiguous()))
|
|
logits = s[:, -1]
|
|
mu = self.mu(logits)
|
|
if not self._unbounded:
|
|
mu = self._max * torch.tanh(mu)
|
|
if self._c_sigma:
|
|
sigma = torch.clamp(
|
|
self.sigma(logits), min=SIGMA_MIN, max=SIGMA_MAX
|
|
).exp()
|
|
else:
|
|
shape = [1] * len(mu.shape)
|
|
shape[1] = -1
|
|
sigma = (self.sigma_param.view(shape) + torch.zeros_like(mu)).exp()
|
|
# please ensure the first dim is batch size: [bsz, len, ...]
|
|
return (mu, sigma), {"h": h.transpose(0, 1).detach(),
|
|
"c": c.transpose(0, 1).detach()}
|
|
|
|
|
|
class RecurrentCritic(nn.Module):
|
|
"""Recurrent version of Critic.
|
|
|
|
For advanced usage (how to customize the network), please refer to
|
|
:ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
layer_num: int,
|
|
state_shape: Sequence[int],
|
|
action_shape: Sequence[int] = [0],
|
|
device: Union[str, int, torch.device] = "cpu",
|
|
hidden_layer_size: int = 128,
|
|
) -> None:
|
|
super().__init__()
|
|
self.state_shape = state_shape
|
|
self.action_shape = action_shape
|
|
self.device = device
|
|
self.nn = nn.LSTM(
|
|
input_size=int(np.prod(state_shape)),
|
|
hidden_size=hidden_layer_size,
|
|
num_layers=layer_num,
|
|
batch_first=True,
|
|
)
|
|
self.fc2 = nn.Linear(hidden_layer_size + int(np.prod(action_shape)), 1)
|
|
|
|
def forward(
|
|
self,
|
|
s: Union[np.ndarray, torch.Tensor],
|
|
a: Optional[Union[np.ndarray, torch.Tensor]] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> torch.Tensor:
|
|
"""Almost the same as :class:`~tianshou.utils.net.common.Recurrent`."""
|
|
s = torch.as_tensor(
|
|
s, device=self.device, dtype=torch.float32) # type: ignore
|
|
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
|
|
# In short, the tensor's shape in training phase is longer than which
|
|
# in evaluation phase.
|
|
assert len(s.shape) == 3
|
|
self.nn.flatten_parameters()
|
|
s, (h, c) = self.nn(s)
|
|
s = s[:, -1]
|
|
if a is not None:
|
|
a = torch.as_tensor(
|
|
a, device=self.device, dtype=torch.float32) # type: ignore
|
|
s = torch.cat([s, a], dim=1)
|
|
s = self.fc2(s)
|
|
return s
|