Improves typing in examples and tests, towards mypy passing there. Introduces the SpaceInfo utility
		
			
				
	
	
		
			572 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			572 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import copy
 | |
| import pickle
 | |
| import sys
 | |
| from itertools import starmap
 | |
| 
 | |
| import networkx as nx
 | |
| import numpy as np
 | |
| import pytest
 | |
| import torch
 | |
| 
 | |
| from tianshou.data import Batch, to_numpy, to_torch
 | |
| 
 | |
| 
 | |
| def test_batch() -> None:
 | |
|     assert list(Batch()) == []
 | |
|     assert Batch().is_empty()
 | |
|     assert not Batch(b={"c": {}}).is_empty()
 | |
|     assert Batch(b={"c": {}}).is_empty(recurse=True)
 | |
|     assert not Batch(a=Batch(), b=Batch(c=Batch())).is_empty()
 | |
|     assert Batch(a=Batch(), b=Batch(c=Batch())).is_empty(recurse=True)
 | |
|     assert not Batch(d=1).is_empty()
 | |
|     assert not Batch(a=np.float64(1.0)).is_empty()
 | |
|     assert len(Batch(a=[1, 2, 3], b={"c": {}})) == 3
 | |
|     assert not Batch(a=[1, 2, 3]).is_empty()
 | |
|     b = Batch({"a": [4, 4], "b": [5, 5]}, c=[None, None])
 | |
|     assert b.c.dtype == object
 | |
|     b = Batch(d=[None], e=[starmap], f=Batch)
 | |
|     assert b.d.dtype == b.e.dtype == object
 | |
|     assert b.f == Batch
 | |
|     b = Batch()
 | |
|     b.update()
 | |
|     assert b.is_empty()
 | |
|     b.update(c=[3, 5])
 | |
|     assert np.allclose(b.c, [3, 5])
 | |
|     # mimic the behavior of dict.update, where kwargs can overwrite keys
 | |
|     b.update({"a": 2}, a=3)
 | |
|     assert "a" in b
 | |
|     assert b.a == 3
 | |
|     assert b.pop("a") == 3
 | |
|     assert "a" not in b
 | |
|     with pytest.raises(AssertionError):
 | |
|         Batch({1: 2})
 | |
|     batch = Batch(a=[torch.ones(3), torch.ones(3)])
 | |
|     assert Batch(a=[np.zeros((2, 3)), np.zeros((3, 3))]).a.dtype == object
 | |
|     with pytest.raises(TypeError):
 | |
|         Batch(a=[np.zeros((3, 2)), np.zeros((3, 3))])
 | |
|     with pytest.raises(TypeError):
 | |
|         Batch(a=[torch.zeros((2, 3)), torch.zeros((3, 3))])
 | |
|     with pytest.raises(TypeError):
 | |
|         Batch(a=[torch.zeros((3, 3)), np.zeros((3, 3))])
 | |
|     with pytest.raises(TypeError):
 | |
|         Batch(a=[1, np.zeros((3, 3)), torch.zeros((3, 3))])
 | |
|     assert torch.allclose(batch.a, torch.ones(2, 3))
 | |
|     batch.cat_(batch)
 | |
|     assert torch.allclose(batch.a, torch.ones(4, 3))
 | |
|     Batch(a=[])
 | |
|     batch = Batch(obs=[0], np=np.zeros([3, 4]))
 | |
|     assert batch.obs == batch["obs"]
 | |
|     batch.obs = [1]
 | |
|     assert batch.obs == [1]
 | |
|     batch.cat_(batch)
 | |
|     assert np.allclose(batch.obs, [1, 1])
 | |
|     assert batch.np.shape == (6, 4)
 | |
|     assert np.allclose(batch[0].obs, batch[1].obs)
 | |
|     batch.obs = np.arange(5)
 | |
|     for i, b in enumerate(batch.split(1, shuffle=False)):
 | |
|         if i != 5:
 | |
|             assert b.obs == batch[i].obs
 | |
|         else:
 | |
|             with pytest.raises(AttributeError):
 | |
|                 batch[i].obs  # noqa: B018
 | |
|             with pytest.raises(AttributeError):
 | |
|                 b.obs  # noqa: B018
 | |
|     print(batch)
 | |
|     batch = Batch(a=np.arange(10))
 | |
|     with pytest.raises(AssertionError):
 | |
|         list(batch.split(0))
 | |
|     data = [
 | |
|         (1, False, [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]]),
 | |
|         (1, True, [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]]),
 | |
|         (3, False, [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]),
 | |
|         (3, True, [[0, 1, 2], [3, 4, 5], [6, 7, 8, 9]]),
 | |
|         (5, False, [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]),
 | |
|         (5, True, [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]),
 | |
|         (7, False, [[0, 1, 2, 3, 4, 5, 6], [7, 8, 9]]),
 | |
|         (7, True, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
 | |
|         (10, False, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
 | |
|         (10, True, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
 | |
|         (15, False, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
 | |
|         (15, True, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
 | |
|         (100, False, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
 | |
|         (100, True, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]),
 | |
|     ]
 | |
|     for size, merge_last, result in data:
 | |
|         bs = list(batch.split(size, shuffle=False, merge_last=merge_last))
 | |
|         assert [bs[i].a.tolist() for i in range(len(bs))] == result
 | |
|     batch_dict = {"b": np.array([1.0]), "c": 2.0, "d": torch.Tensor([3.0])}
 | |
|     batch_item = Batch({"a": [batch_dict]})[0]
 | |
|     assert isinstance(batch_item.a.b, np.ndarray)
 | |
|     assert batch_item.a.b == batch_dict["b"]
 | |
|     assert isinstance(batch_item.a.c, float)
 | |
|     assert batch_item.a.c == batch_dict["c"]
 | |
|     assert isinstance(batch_item.a.d, torch.Tensor)
 | |
|     assert batch_item.a.d == batch_dict["d"]
 | |
|     batch2 = Batch(a=[{"b": np.float64(1.0), "c": np.zeros(1), "d": Batch(e=np.array(3.0))}])
 | |
|     assert len(batch2) == 1
 | |
|     assert Batch().shape == []
 | |
|     assert Batch(a=1).shape == []
 | |
|     assert Batch(a={1, 2}).shape == []
 | |
|     assert batch2.shape[0] == 1
 | |
|     assert "a" in batch2
 | |
|     assert all(i in batch2.a for i in "bcd")
 | |
|     with pytest.raises(IndexError):
 | |
|         batch2[-2]
 | |
|     with pytest.raises(IndexError):
 | |
|         batch2[1]
 | |
|     assert batch2[0].shape == []
 | |
|     with pytest.raises(IndexError):
 | |
|         batch2[0][0]
 | |
|     with pytest.raises(TypeError):
 | |
|         len(batch2[0])
 | |
|     assert isinstance(batch2[0].a.c, np.ndarray)
 | |
|     assert isinstance(batch2[0].a.b, np.float64)
 | |
|     assert isinstance(batch2[0].a.d.e, np.float64)
 | |
|     batch2_from_list = Batch(list(batch2))
 | |
|     batch2_from_comp = Batch(list(batch2))
 | |
|     assert batch2_from_list.a.b == batch2.a.b
 | |
|     assert batch2_from_list.a.c == batch2.a.c
 | |
|     assert batch2_from_list.a.d.e == batch2.a.d.e
 | |
|     assert batch2_from_comp.a.b == batch2.a.b
 | |
|     assert batch2_from_comp.a.c == batch2.a.c
 | |
|     assert batch2_from_comp.a.d.e == batch2.a.d.e
 | |
|     for batch_slice in [batch2[slice(0, 1)], batch2[:1], batch2[0:]]:
 | |
|         assert batch_slice.a.b == batch2.a.b
 | |
|         assert batch_slice.a.c == batch2.a.c
 | |
|         assert batch_slice.a.d.e == batch2.a.d.e
 | |
|     batch2.a.d.f = {}
 | |
|     batch2_sum = (batch2 + 1.0) * 2
 | |
|     assert batch2_sum.a.b == (batch2.a.b + 1.0) * 2
 | |
|     assert batch2_sum.a.c == (batch2.a.c + 1.0) * 2
 | |
|     assert batch2_sum.a.d.e == (batch2.a.d.e + 1.0) * 2
 | |
|     assert batch2_sum.a.d.f.is_empty()
 | |
|     with pytest.raises(TypeError):
 | |
|         batch2 += [1]
 | |
|     batch3 = Batch(a={"c": np.zeros(1), "d": Batch(e=np.array([0.0]), f=np.array([3.0]))})
 | |
|     batch3.a.d[0] = {"e": 4.0}
 | |
|     assert batch3.a.d.e[0] == 4.0
 | |
|     batch3.a.d[0] = Batch(f=5.0)
 | |
|     assert batch3.a.d.f[0] == 5.0
 | |
|     with pytest.raises(ValueError):
 | |
|         batch3.a.d[0] = Batch(f=5.0, g=0.0)
 | |
|     with pytest.raises(ValueError):
 | |
|         batch3[0] = Batch(a={"c": 2, "e": 1})
 | |
|     # auto convert
 | |
|     batch4 = Batch(a=np.array(["a", "b"]))
 | |
|     assert batch4.a.dtype == object  # auto convert to object
 | |
|     batch4.update(a=np.array(["c", "d"]))
 | |
|     assert list(batch4.a) == ["c", "d"]
 | |
|     assert batch4.a.dtype == object  # auto convert to object
 | |
|     batch5 = Batch(a=np.array([{"index": 0}]))
 | |
|     assert isinstance(batch5.a, Batch)
 | |
|     assert np.allclose(batch5.a.index, [0])
 | |
|     batch5.b = np.array([{"index": 1}])
 | |
|     assert isinstance(batch5.b, Batch)
 | |
|     assert np.allclose(batch5.b.index, [1])
 | |
| 
 | |
|     # None is a valid object and can be stored in Batch
 | |
|     a = Batch.stack([Batch(a=None), Batch(b=None)])
 | |
|     assert a.a[0] is None
 | |
|     assert a.a[1] is None
 | |
|     assert a.b[0] is None
 | |
|     assert a.b[1] is None
 | |
| 
 | |
|     # nx.Graph corner case
 | |
|     assert Batch(a=np.array([nx.Graph(), nx.Graph()], dtype=object)).a.dtype == object
 | |
|     g1 = nx.Graph()
 | |
|     g1.add_nodes_from(list(range(10)))
 | |
|     g2 = nx.Graph()
 | |
|     g2.add_nodes_from(list(range(20)))
 | |
|     assert Batch(a=np.array([g1, g2], dtype=object)).a.dtype == object
 | |
| 
 | |
| 
 | |
| def test_batch_over_batch() -> None:
 | |
|     batch = Batch(a=[3, 4, 5], b=[4, 5, 6])
 | |
|     batch2 = Batch({"c": [6, 7, 8], "b": batch})
 | |
|     batch2.b.b[-1] = 0
 | |
|     print(batch2)
 | |
|     for k, v in batch2.items():
 | |
|         assert np.all(batch2[k] == v)
 | |
|     assert batch2[-1].b.b == 0
 | |
|     batch2.cat_(Batch(c=[6, 7, 8], b=batch))
 | |
|     assert np.allclose(batch2.c, [6, 7, 8, 6, 7, 8])
 | |
|     assert np.allclose(batch2.b.a, [3, 4, 5, 3, 4, 5])
 | |
|     assert np.allclose(batch2.b.b, [4, 5, 0, 4, 5, 0])
 | |
|     batch2.update(batch2.b, six=[6, 6, 6])
 | |
|     assert np.allclose(batch2.c, [6, 7, 8, 6, 7, 8])
 | |
|     assert np.allclose(batch2.a, [3, 4, 5, 3, 4, 5])
 | |
|     assert np.allclose(batch2.b, [4, 5, 0, 4, 5, 0])
 | |
|     assert np.allclose(batch2.six, [6, 6, 6])
 | |
|     d = {"a": [3, 4, 5], "b": [4, 5, 6]}
 | |
|     batch3 = Batch(c=[6, 7, 8], b=d)
 | |
|     batch3.cat_(Batch(c=[6, 7, 8], b=d))
 | |
|     assert np.allclose(batch3.c, [6, 7, 8, 6, 7, 8])
 | |
|     assert np.allclose(batch3.b.a, [3, 4, 5, 3, 4, 5])
 | |
|     assert np.allclose(batch3.b.b, [4, 5, 6, 4, 5, 6])
 | |
|     batch4 = Batch(({"a": {"b": np.array([1.0])}},))
 | |
|     assert batch4.a.b.ndim == 2
 | |
|     assert batch4.a.b[0, 0] == 1.0
 | |
|     # advanced slicing
 | |
|     batch5 = Batch(a=[[1, 2]], b={"c": np.zeros([3, 2, 1])})
 | |
|     assert batch5.shape == [1, 2]
 | |
|     with pytest.raises(IndexError):
 | |
|         batch5[2]
 | |
|     with pytest.raises(IndexError):
 | |
|         batch5[:, 3]
 | |
|     with pytest.raises(IndexError):
 | |
|         batch5[:, :, -1]
 | |
|     batch5[:, -1] += 1
 | |
|     assert np.allclose(batch5.a, [1, 3])
 | |
|     assert np.allclose(batch5.b.c.squeeze(), [[0, 1]] * 3)
 | |
|     with pytest.raises(ValueError):
 | |
|         batch5[:, -1] = 1
 | |
|     batch5[:, 0] = {"a": -1}
 | |
|     assert np.allclose(batch5.a, [-1, 3])
 | |
|     assert np.allclose(batch5.b.c.squeeze(), [[0, 1]] * 3)
 | |
| 
 | |
| 
 | |
| def test_batch_cat_and_stack() -> None:
 | |
|     # test cat with compatible keys
 | |
|     b1 = Batch(a=[{"b": np.float64(1.0), "d": Batch(e=np.array(3.0))}])
 | |
|     b2 = Batch(a=[{"b": np.float64(4.0), "d": {"e": np.array(6.0)}}])
 | |
|     b12_cat_out = Batch.cat([b1, b2])
 | |
|     b12_cat_in = copy.deepcopy(b1)
 | |
|     b12_cat_in.cat_(b2)
 | |
|     assert np.all(b12_cat_in.a.d.e == b12_cat_out.a.d.e)
 | |
|     assert np.all(b12_cat_in.a.d.e == b12_cat_out.a.d.e)
 | |
|     assert isinstance(b12_cat_in.a.d.e, np.ndarray)
 | |
|     assert b12_cat_in.a.d.e.ndim == 1
 | |
| 
 | |
|     a = Batch(a=Batch(a=np.random.randn(3, 4)))
 | |
|     assert np.allclose(
 | |
|         np.concatenate([a.a.a, a.a.a]),
 | |
|         Batch.cat([a, Batch(a=Batch(a=Batch())), a]).a.a,
 | |
|     )
 | |
| 
 | |
|     # test cat with lens infer
 | |
|     a = Batch(a=Batch(a=np.random.randn(3, 4)), b=np.random.randn(3, 4))
 | |
|     b = Batch(a=Batch(a=Batch(), t=Batch()), b=np.random.randn(3, 4))
 | |
|     ans = Batch.cat([a, b, a])
 | |
|     assert np.allclose(ans.a.a, np.concatenate([a.a.a, np.zeros((3, 4)), a.a.a]))
 | |
|     assert np.allclose(ans.b, np.concatenate([a.b, b.b, a.b]))
 | |
|     assert ans.a.t.is_empty()
 | |
| 
 | |
|     assert b1.stack_([b2]) is None
 | |
|     assert isinstance(b1.a.d.e, np.ndarray)
 | |
|     assert b1.a.d.e.ndim == 2
 | |
| 
 | |
|     # test cat with incompatible keys
 | |
|     b1 = Batch(a=np.random.rand(3, 4), common=Batch(c=np.random.rand(3, 5)))
 | |
|     b2 = Batch(b=torch.rand(4, 3), common=Batch(c=np.random.rand(4, 5)))
 | |
|     test = Batch.cat([b1, b2])
 | |
|     ans = Batch(
 | |
|         a=np.concatenate([b1.a, np.zeros((4, 4))]),
 | |
|         b=torch.cat([torch.zeros(3, 3), b2.b]),
 | |
|         common=Batch(c=np.concatenate([b1.common.c, b2.common.c])),
 | |
|     )
 | |
|     assert np.allclose(test.a, ans.a)
 | |
|     assert torch.allclose(test.b, ans.b)
 | |
|     assert np.allclose(test.common.c, ans.common.c)
 | |
| 
 | |
|     # test cat with reserved keys (values are Batch())
 | |
|     b1 = Batch(a=np.random.rand(3, 4), common=Batch(c=np.random.rand(3, 5)))
 | |
|     b2 = Batch(a=Batch(), b=torch.rand(4, 3), common=Batch(c=np.random.rand(4, 5)))
 | |
|     test = Batch.cat([b1, b2])
 | |
|     ans = Batch(
 | |
|         a=np.concatenate([b1.a, np.zeros((4, 4))]),
 | |
|         b=torch.cat([torch.zeros(3, 3), b2.b]),
 | |
|         common=Batch(c=np.concatenate([b1.common.c, b2.common.c])),
 | |
|     )
 | |
|     assert np.allclose(test.a, ans.a)
 | |
|     assert torch.allclose(test.b, ans.b)
 | |
|     assert np.allclose(test.common.c, ans.common.c)
 | |
| 
 | |
|     # test cat with all reserved keys (values are Batch())
 | |
|     b1 = Batch(a=Batch(), common=Batch(c=np.random.rand(3, 5)))
 | |
|     b2 = Batch(a=Batch(), b=torch.rand(4, 3), common=Batch(c=np.random.rand(4, 5)))
 | |
|     test = Batch.cat([b1, b2])
 | |
|     ans = Batch(
 | |
|         a=Batch(),
 | |
|         b=torch.cat([torch.zeros(3, 3), b2.b]),
 | |
|         common=Batch(c=np.concatenate([b1.common.c, b2.common.c])),
 | |
|     )
 | |
|     assert ans.a.is_empty()
 | |
|     assert torch.allclose(test.b, ans.b)
 | |
|     assert np.allclose(test.common.c, ans.common.c)
 | |
| 
 | |
|     # test stack with compatible keys
 | |
|     b3 = Batch(a=np.zeros((3, 4)), b=torch.ones((2, 5)), c=Batch(d=[[1], [2]]))
 | |
|     b4 = Batch(a=np.ones((3, 4)), b=torch.ones((2, 5)), c=Batch(d=[[0], [3]]))
 | |
|     b34_stack = Batch.stack((b3, b4), axis=1)
 | |
|     assert np.all(b34_stack.a == np.stack((b3.a, b4.a), axis=1))
 | |
|     assert np.all(b34_stack.c.d == list(map(list, zip(b3.c.d, b4.c.d, strict=True))))
 | |
|     b5_dict = np.array([{"a": False, "b": {"c": 2.0, "d": 1.0}}, {"a": True, "b": {"c": 3.0}}])
 | |
|     b5 = Batch(b5_dict)
 | |
|     assert b5.a[0] == np.array(False)
 | |
|     assert b5.a[1] == np.array(True)
 | |
|     assert np.all(b5.b.c == np.stack([e["b"]["c"] for e in b5_dict], axis=0))
 | |
|     assert b5.b.d[0] == b5_dict[0]["b"]["d"]
 | |
|     assert b5.b.d[1] == 0.0
 | |
| 
 | |
|     # test stack with incompatible keys
 | |
|     a = Batch(a=1, b=2, c=3)
 | |
|     b = Batch(a=4, b=5, d=6)
 | |
|     c = Batch(c=7, b=6, d=9)
 | |
|     d = Batch.stack([a, b, c])
 | |
|     assert np.allclose(d.a, [1, 4, 0])
 | |
|     assert np.allclose(d.b, [2, 5, 6])
 | |
|     assert np.allclose(d.c, [3, 0, 7])
 | |
|     assert np.allclose(d.d, [0, 6, 9])
 | |
| 
 | |
|     # test stack with empty Batch()
 | |
|     assert Batch.stack([Batch(), Batch(), Batch()]).is_empty()
 | |
|     a = Batch(a=1, b=2, c=3, d=Batch(), e=Batch())
 | |
|     b = Batch(a=4, b=5, d=6, e=Batch())
 | |
|     c = Batch(c=7, b=6, d=9, e=Batch())
 | |
|     d = Batch.stack([a, b, c])
 | |
|     assert np.allclose(d.a, [1, 4, 0])
 | |
|     assert np.allclose(d.b, [2, 5, 6])
 | |
|     assert np.allclose(d.c, [3, 0, 7])
 | |
|     assert np.allclose(d.d, [0, 6, 9])
 | |
|     assert d.e.is_empty()
 | |
|     b1 = Batch(a=Batch(), common=Batch(c=np.random.rand(4, 5)))
 | |
|     b2 = Batch(b=Batch(), common=Batch(c=np.random.rand(4, 5)))
 | |
|     test = Batch.stack([b1, b2], axis=-1)
 | |
|     assert test.a.is_empty()
 | |
|     assert test.b.is_empty()
 | |
|     assert np.allclose(test.common.c, np.stack([b1.common.c, b2.common.c], axis=-1))
 | |
| 
 | |
|     b1 = Batch(a=np.random.rand(4, 4), common=Batch(c=np.random.rand(4, 5)))
 | |
|     b2 = Batch(b=torch.rand(4, 6), common=Batch(c=np.random.rand(4, 5)))
 | |
|     test = Batch.stack([b1, b2])
 | |
|     ans = Batch(
 | |
|         a=np.stack([b1.a, np.zeros((4, 4))]),
 | |
|         b=torch.stack([torch.zeros(4, 6), b2.b]),
 | |
|         common=Batch(c=np.stack([b1.common.c, b2.common.c])),
 | |
|     )
 | |
|     assert np.allclose(test.a, ans.a)
 | |
|     assert torch.allclose(test.b, ans.b)
 | |
|     assert np.allclose(test.common.c, ans.common.c)
 | |
| 
 | |
|     # test with illegal input format
 | |
|     with pytest.raises(ValueError):
 | |
|         Batch.cat([[Batch(a=1)], [Batch(a=1)]])
 | |
|     with pytest.raises(ValueError):
 | |
|         Batch.stack([[Batch(a=1)], [Batch(a=1)]])
 | |
| 
 | |
|     # exceptions
 | |
|     assert Batch.cat([]).is_empty()
 | |
|     assert Batch.stack([]).is_empty()
 | |
|     b1 = Batch(e=[4, 5], d=6)
 | |
|     b2 = Batch(e=[4, 6])
 | |
|     with pytest.raises(ValueError):
 | |
|         Batch.cat([b1, b2])
 | |
|     with pytest.raises(ValueError):
 | |
|         Batch.stack([b1, b2], axis=1)
 | |
| 
 | |
| 
 | |
| def test_batch_over_batch_to_torch() -> None:
 | |
|     batch = Batch(
 | |
|         a=np.float64(1.0),
 | |
|         b=Batch(c=np.ones((1,), dtype=np.float32), d=torch.ones((1,), dtype=torch.float64)),
 | |
|     )
 | |
|     batch.b.__dict__["e"] = 1  # bypass the check
 | |
|     batch.to_torch()
 | |
|     assert isinstance(batch.a, torch.Tensor)
 | |
|     assert isinstance(batch.b.c, torch.Tensor)
 | |
|     assert isinstance(batch.b.d, torch.Tensor)
 | |
|     assert isinstance(batch.b.e, torch.Tensor)
 | |
|     assert batch.a.dtype == torch.float64
 | |
|     assert batch.b.c.dtype == torch.float32
 | |
|     assert batch.b.d.dtype == torch.float64
 | |
|     if sys.platform in ["win32", "cygwin"]:  # windows
 | |
|         assert batch.b.e.dtype == torch.int32
 | |
|     else:
 | |
|         assert batch.b.e.dtype == torch.int64
 | |
|     batch.to_torch(dtype=torch.float32)
 | |
|     assert batch.a.dtype == torch.float32
 | |
|     assert batch.b.c.dtype == torch.float32
 | |
|     assert batch.b.d.dtype == torch.float32
 | |
|     assert batch.b.e.dtype == torch.float32
 | |
| 
 | |
| 
 | |
| def test_utils_to_torch_numpy() -> None:
 | |
|     batch = Batch(
 | |
|         a=np.float64(1.0),
 | |
|         b=Batch(c=np.ones((1,), dtype=np.float32), d=torch.ones((1,), dtype=torch.float64)),
 | |
|     )
 | |
|     a_torch_float = to_torch(batch.a, dtype=torch.float32)
 | |
|     assert a_torch_float.dtype == torch.float32
 | |
|     a_torch_double = to_torch(batch.a, dtype=torch.float64)
 | |
|     assert a_torch_double.dtype == torch.float64
 | |
|     batch_torch_float = to_torch(batch, dtype=torch.float32)
 | |
|     assert batch_torch_float.a.dtype == torch.float32
 | |
|     assert batch_torch_float.b.c.dtype == torch.float32
 | |
|     assert batch_torch_float.b.d.dtype == torch.float32
 | |
|     data_list = [float("nan"), 1]
 | |
|     data_list_torch = to_torch(data_list)
 | |
|     assert data_list_torch.dtype == torch.float64
 | |
|     data_list_2 = [np.random.rand(3, 3), np.random.rand(3, 3)]
 | |
|     data_list_2_torch = to_torch(data_list_2)
 | |
|     assert data_list_2_torch.shape == (2, 3, 3)
 | |
|     assert np.allclose(to_numpy(to_torch(data_list_2)), data_list_2)
 | |
|     data_list_3 = [np.zeros((3, 2)), np.zeros((3, 3))]
 | |
|     data_list_3_torch = [torch.zeros((3, 2)), torch.zeros((3, 3))]
 | |
|     with pytest.raises(TypeError):
 | |
|         to_torch(data_list_3)
 | |
|     with pytest.raises(TypeError):
 | |
|         to_numpy(data_list_3_torch)
 | |
|     data_list_4 = [np.zeros((2, 3)), np.zeros((3, 3))]
 | |
|     data_list_4_torch = [torch.zeros((2, 3)), torch.zeros((3, 3))]
 | |
|     with pytest.raises(TypeError):
 | |
|         to_torch(data_list_4)
 | |
|     with pytest.raises(TypeError):
 | |
|         to_numpy(data_list_4_torch)
 | |
|     data_list_5 = [np.zeros(2), np.zeros((3, 3))]
 | |
|     data_list_5_torch = [torch.zeros(2), torch.zeros((3, 3))]
 | |
|     with pytest.raises(TypeError):
 | |
|         to_torch(data_list_5)
 | |
|     with pytest.raises(TypeError):
 | |
|         to_numpy(data_list_5_torch)
 | |
|     data_array = np.random.rand(3, 2, 2)
 | |
|     data_empty_tensor = to_torch(data_array[[]])
 | |
|     assert isinstance(data_empty_tensor, torch.Tensor)
 | |
|     assert data_empty_tensor.shape == (0, 2, 2)
 | |
|     data_empty_array = to_numpy(data_empty_tensor)
 | |
|     assert isinstance(data_empty_array, np.ndarray)
 | |
|     assert data_empty_array.shape == (0, 2, 2)
 | |
|     assert np.allclose(to_numpy(to_torch(data_array)), data_array)
 | |
|     # additional test for to_numpy, for code-coverage
 | |
|     assert isinstance(to_numpy(1), np.ndarray)
 | |
|     assert isinstance(to_numpy(1.0), np.ndarray)
 | |
|     assert isinstance(to_numpy({"a": torch.tensor(1)})["a"], np.ndarray)
 | |
|     assert isinstance(to_numpy(Batch(a=torch.tensor(1))).a, np.ndarray)
 | |
|     assert to_numpy(None).item() is None
 | |
|     assert to_numpy(to_numpy).item() == to_numpy
 | |
|     # additional test for to_torch, for code-coverage
 | |
|     assert isinstance(to_torch(1), torch.Tensor)
 | |
|     if sys.platform in ["win32", "cygwin"]:  # windows
 | |
|         assert to_torch(1).dtype == torch.int32
 | |
|     else:
 | |
|         assert to_torch(1).dtype == torch.int64
 | |
|     assert to_torch(1.0).dtype == torch.float64
 | |
|     assert isinstance(to_torch({"a": [1]})["a"], torch.Tensor)
 | |
|     with pytest.raises(TypeError):
 | |
|         to_torch(None)
 | |
|     with pytest.raises(TypeError):
 | |
|         to_torch(np.array([{}, "2"]))
 | |
| 
 | |
| 
 | |
| def test_batch_pickle() -> None:
 | |
|     batch = Batch(obs=Batch(a=0.0, c=torch.Tensor([1.0, 2.0])), np=np.zeros([3, 4]))
 | |
|     batch_pk = pickle.loads(pickle.dumps(batch))
 | |
|     assert batch.obs.a == batch_pk.obs.a
 | |
|     assert torch.all(batch.obs.c == batch_pk.obs.c)
 | |
|     assert np.all(batch.np == batch_pk.np)
 | |
| 
 | |
| 
 | |
| def test_batch_from_to_numpy_without_copy() -> None:
 | |
|     batch = Batch(a=np.ones((1,)), b=Batch(c=np.ones((1,))))
 | |
|     a_mem_addr_orig = batch.a.__array_interface__["data"][0]
 | |
|     c_mem_addr_orig = batch.b.c.__array_interface__["data"][0]
 | |
|     batch.to_torch()
 | |
|     batch.to_numpy()
 | |
|     a_mem_addr_new = batch.a.__array_interface__["data"][0]
 | |
|     c_mem_addr_new = batch.b.c.__array_interface__["data"][0]
 | |
|     assert a_mem_addr_new == a_mem_addr_orig
 | |
|     assert c_mem_addr_new == c_mem_addr_orig
 | |
| 
 | |
| 
 | |
| def test_batch_copy() -> None:
 | |
|     batch = Batch(a=np.array([3, 4, 5]), b=np.array([4, 5, 6]))
 | |
|     batch2 = Batch({"c": np.array([6, 7, 8]), "b": batch})
 | |
|     orig_c_addr = batch2.c.__array_interface__["data"][0]
 | |
|     orig_b_a_addr = batch2.b.a.__array_interface__["data"][0]
 | |
|     orig_b_b_addr = batch2.b.b.__array_interface__["data"][0]
 | |
|     # test with copy=False
 | |
|     batch3 = Batch(copy=False, **batch2)
 | |
|     curr_c_addr = batch3.c.__array_interface__["data"][0]
 | |
|     curr_b_a_addr = batch3.b.a.__array_interface__["data"][0]
 | |
|     curr_b_b_addr = batch3.b.b.__array_interface__["data"][0]
 | |
|     assert batch2.c is batch3.c
 | |
|     assert batch2.b is batch3.b
 | |
|     assert batch2.b.a is batch3.b.a
 | |
|     assert batch2.b.b is batch3.b.b
 | |
|     assert orig_c_addr == curr_c_addr
 | |
|     assert orig_b_a_addr == curr_b_a_addr
 | |
|     assert orig_b_b_addr == curr_b_b_addr
 | |
|     # test with copy=True
 | |
|     batch3 = Batch(copy=True, **batch2)
 | |
|     curr_c_addr = batch3.c.__array_interface__["data"][0]
 | |
|     curr_b_a_addr = batch3.b.a.__array_interface__["data"][0]
 | |
|     curr_b_b_addr = batch3.b.b.__array_interface__["data"][0]
 | |
|     assert batch2.c is not batch3.c
 | |
|     assert batch2.b is not batch3.b
 | |
|     assert batch2.b.a is not batch3.b.a
 | |
|     assert batch2.b.b is not batch3.b.b
 | |
|     assert orig_c_addr != curr_c_addr
 | |
|     assert orig_b_a_addr != curr_b_a_addr
 | |
|     assert orig_b_b_addr != curr_b_b_addr
 | |
| 
 | |
| 
 | |
| def test_batch_empty() -> None:
 | |
|     b5_dict = np.array([{"a": False, "b": {"c": 2.0, "d": 1.0}}, {"a": True, "b": {"c": 3.0}}])
 | |
|     b5 = Batch(b5_dict)
 | |
|     b5[1] = Batch.empty(b5[0])
 | |
|     assert np.allclose(b5.a, [False, False])
 | |
|     assert np.allclose(b5.b.c, [2, 0])
 | |
|     assert np.allclose(b5.b.d, [1, 0])
 | |
|     data = Batch(
 | |
|         a=[False, True],
 | |
|         b={
 | |
|             "c": np.array([2.0, "st"], dtype=object),
 | |
|             "d": [1, None],
 | |
|             "e": [2.0, float("nan")],
 | |
|         },
 | |
|         c=np.array([1, 3, 4], dtype=int),
 | |
|         t=torch.tensor([4, 5, 6, 7.0]),
 | |
|     )
 | |
|     data[-1] = Batch.empty(data[1])
 | |
|     assert np.allclose(data.c, [1, 3, 0])
 | |
|     assert np.allclose(data.a, [False, False])
 | |
|     assert list(data.b.c) == [2.0, None]
 | |
|     assert list(data.b.d) == [1, None]
 | |
|     assert np.allclose(data.b.e, [2, 0])
 | |
|     assert torch.allclose(data.t, torch.tensor([4, 5, 6, 0.0]))
 | |
|     data[0].empty_()  # which will fail in a, b.c, b.d, b.e, c
 | |
|     assert torch.allclose(data.t, torch.tensor([0.0, 5, 6, 0]))
 | |
|     data.empty_(index=0)
 | |
|     assert np.allclose(data.c, [0, 3, 0])
 | |
|     assert list(data.b.c) == [None, None]
 | |
|     assert list(data.b.d) == [None, None]
 | |
|     assert list(data.b.e) == [0, 0]
 | |
|     b0 = Batch()
 | |
|     b0.empty_()
 | |
|     assert b0.shape == []
 | |
| 
 | |
| 
 | |
| def test_batch_standard_compatibility() -> None:
 | |
|     batch = Batch(a=np.array([[1.0, 2.0], [3.0, 4.0]]), b=Batch(), c=np.array([5.0, 6.0]))
 | |
|     batch_mean = np.mean(batch)
 | |
|     assert isinstance(batch_mean, Batch)
 | |
|     assert sorted(batch_mean.keys()) == ["a", "b", "c"]
 | |
|     with pytest.raises(TypeError):
 | |
|         len(batch_mean)
 | |
|     assert np.all(batch_mean.a == np.mean(batch.a, axis=0))
 | |
|     assert batch_mean.c == np.mean(batch.c, axis=0)
 | |
|     with pytest.raises(IndexError):
 | |
|         Batch()[0]
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     test_batch()
 | |
|     test_batch_over_batch()
 | |
|     test_batch_over_batch_to_torch()
 | |
|     test_utils_to_torch_numpy()
 | |
|     test_batch_pickle()
 | |
|     test_batch_from_to_numpy_without_copy()
 | |
|     test_batch_standard_compatibility()
 | |
|     test_batch_cat_and_stack()
 | |
|     test_batch_copy()
 | |
|     test_batch_empty()
 |