Solves the inconsistency that iter(Batch) is not the same as Batch.keys() by "deprecating" the implicit .keys() method Closes: #922
324 lines
12 KiB
Python
324 lines
12 KiB
Python
from collections.abc import Sequence
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
from numba import njit
|
|
|
|
from tianshou.data import Batch, HERReplayBuffer, PrioritizedReplayBuffer, ReplayBuffer
|
|
from tianshou.data.batch import alloc_by_keys_diff, create_value
|
|
from tianshou.data.types import RolloutBatchProtocol
|
|
|
|
|
|
class ReplayBufferManager(ReplayBuffer):
|
|
"""ReplayBufferManager contains a list of ReplayBuffer with exactly the same configuration.
|
|
|
|
These replay buffers have contiguous memory layout, and the storage space each
|
|
buffer has is a shallow copy of the topmost memory.
|
|
|
|
:param buffer_list: a list of ReplayBuffer needed to be handled.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
|
|
"""
|
|
|
|
def __init__(self, buffer_list: list[ReplayBuffer] | list[HERReplayBuffer]) -> None:
|
|
self.buffer_num = len(buffer_list)
|
|
self.buffers = np.array(buffer_list, dtype=object)
|
|
offset, size = [], 0
|
|
buffer_type = type(self.buffers[0])
|
|
kwargs = self.buffers[0].options
|
|
for buf in self.buffers:
|
|
assert buf._meta.is_empty()
|
|
assert isinstance(buf, buffer_type)
|
|
assert buf.options == kwargs
|
|
offset.append(size)
|
|
size += buf.maxsize
|
|
self._offset = np.array(offset)
|
|
self._extend_offset = np.array([*offset, size])
|
|
self._lengths = np.zeros_like(offset)
|
|
super().__init__(size=size, **kwargs)
|
|
self._compile()
|
|
self._meta: RolloutBatchProtocol
|
|
|
|
def _compile(self) -> None:
|
|
lens = last = index = np.array([0])
|
|
offset = np.array([0, 1])
|
|
done = np.array([False, False])
|
|
_prev_index(index, offset, done, last, lens)
|
|
_next_index(index, offset, done, last, lens)
|
|
|
|
def __len__(self) -> int:
|
|
return int(self._lengths.sum())
|
|
|
|
def reset(self, keep_statistics: bool = False) -> None:
|
|
self.last_index = self._offset.copy()
|
|
self._lengths = np.zeros_like(self._offset)
|
|
for buf in self.buffers:
|
|
buf.reset(keep_statistics=keep_statistics)
|
|
|
|
def _set_batch_for_children(self) -> None:
|
|
for offset, buf in zip(self._offset, self.buffers, strict=True):
|
|
buf.set_batch(self._meta[offset : offset + buf.maxsize])
|
|
|
|
def set_batch(self, batch: RolloutBatchProtocol) -> None:
|
|
super().set_batch(batch)
|
|
self._set_batch_for_children()
|
|
|
|
def unfinished_index(self) -> np.ndarray:
|
|
return np.concatenate(
|
|
[
|
|
buf.unfinished_index() + offset
|
|
for offset, buf in zip(self._offset, self.buffers, strict=True)
|
|
],
|
|
)
|
|
|
|
def prev(self, index: int | np.ndarray) -> np.ndarray:
|
|
if isinstance(index, list | np.ndarray):
|
|
return _prev_index(
|
|
np.asarray(index),
|
|
self._extend_offset,
|
|
self.done,
|
|
self.last_index,
|
|
self._lengths,
|
|
)
|
|
return _prev_index(
|
|
np.array([index]),
|
|
self._extend_offset,
|
|
self.done,
|
|
self.last_index,
|
|
self._lengths,
|
|
)[0]
|
|
|
|
def next(self, index: int | np.ndarray) -> np.ndarray:
|
|
if isinstance(index, list | np.ndarray):
|
|
return _next_index(
|
|
np.asarray(index),
|
|
self._extend_offset,
|
|
self.done,
|
|
self.last_index,
|
|
self._lengths,
|
|
)
|
|
return _next_index(
|
|
np.array([index]),
|
|
self._extend_offset,
|
|
self.done,
|
|
self.last_index,
|
|
self._lengths,
|
|
)[0]
|
|
|
|
def update(self, buffer: ReplayBuffer) -> np.ndarray:
|
|
"""The ReplayBufferManager cannot be updated by any buffer."""
|
|
raise NotImplementedError
|
|
|
|
def add(
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
buffer_ids: np.ndarray | list[int] | None = None,
|
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
"""Add a batch of data into ReplayBufferManager.
|
|
|
|
Each of the data's length (first dimension) must equal to the length of
|
|
buffer_ids. By default buffer_ids is [0, 1, ..., buffer_num - 1].
|
|
|
|
Return (current_index, episode_reward, episode_length, episode_start_index). If
|
|
the episode is not finished, the return value of episode_length and
|
|
episode_reward is 0.
|
|
"""
|
|
# preprocess batch
|
|
new_batch = Batch()
|
|
for key in set(self._reserved_keys).intersection(batch.get_keys()):
|
|
new_batch.__dict__[key] = batch[key]
|
|
batch = new_batch
|
|
batch.__dict__["done"] = np.logical_or(batch.terminated, batch.truncated)
|
|
assert {"obs", "act", "rew", "terminated", "truncated", "done"}.issubset(batch.get_keys())
|
|
if self._save_only_last_obs:
|
|
batch.obs = batch.obs[:, -1]
|
|
if not self._save_obs_next:
|
|
batch.pop("obs_next", None)
|
|
elif self._save_only_last_obs:
|
|
batch.obs_next = batch.obs_next[:, -1]
|
|
# get index
|
|
if buffer_ids is None:
|
|
buffer_ids = np.arange(self.buffer_num)
|
|
ptrs, ep_lens, ep_rews, ep_idxs = [], [], [], []
|
|
for batch_idx, buffer_id in enumerate(buffer_ids):
|
|
ptr, ep_rew, ep_len, ep_idx = self.buffers[buffer_id]._add_index(
|
|
batch.rew[batch_idx],
|
|
batch.done[batch_idx],
|
|
)
|
|
ptrs.append(ptr + self._offset[buffer_id])
|
|
ep_lens.append(ep_len)
|
|
ep_rews.append(ep_rew)
|
|
ep_idxs.append(ep_idx + self._offset[buffer_id])
|
|
self.last_index[buffer_id] = ptr + self._offset[buffer_id]
|
|
self._lengths[buffer_id] = len(self.buffers[buffer_id])
|
|
ptrs = np.array(ptrs)
|
|
try:
|
|
self._meta[ptrs] = batch
|
|
except ValueError:
|
|
batch.rew = batch.rew.astype(float)
|
|
batch.done = batch.done.astype(bool)
|
|
batch.terminated = batch.terminated.astype(bool)
|
|
batch.truncated = batch.truncated.astype(bool)
|
|
if self._meta.is_empty():
|
|
self._meta = create_value(batch, self.maxsize, stack=False) # type: ignore
|
|
else: # dynamic key pops up in batch
|
|
alloc_by_keys_diff(self._meta, batch, self.maxsize, False)
|
|
self._set_batch_for_children()
|
|
self._meta[ptrs] = batch
|
|
return ptrs, np.array(ep_rews), np.array(ep_lens), np.array(ep_idxs)
|
|
|
|
def sample_indices(self, batch_size: int | None) -> np.ndarray:
|
|
# TODO: simplify this code
|
|
if batch_size is not None and batch_size < 0:
|
|
# TODO: raise error instead?
|
|
return np.array([], int)
|
|
if self._sample_avail and self.stack_num > 1:
|
|
all_indices = np.concatenate(
|
|
[
|
|
buf.sample_indices(0) + offset
|
|
for offset, buf in zip(self._offset, self.buffers, strict=True)
|
|
],
|
|
)
|
|
if batch_size == 0:
|
|
return all_indices
|
|
if batch_size is None:
|
|
batch_size = len(all_indices)
|
|
return np.random.choice(all_indices, batch_size)
|
|
if batch_size == 0 or batch_size is None: # get all available indices
|
|
sample_num = np.zeros(self.buffer_num, int)
|
|
else:
|
|
buffer_idx = np.random.choice(
|
|
self.buffer_num,
|
|
batch_size,
|
|
p=self._lengths / self._lengths.sum(),
|
|
)
|
|
sample_num = np.bincount(buffer_idx, minlength=self.buffer_num)
|
|
# avoid batch_size > 0 and sample_num == 0 -> get child's all data
|
|
sample_num[sample_num == 0] = -1
|
|
|
|
return np.concatenate(
|
|
[
|
|
buf.sample_indices(int(bsz)) + offset
|
|
for offset, buf, bsz in zip(self._offset, self.buffers, sample_num, strict=True)
|
|
],
|
|
)
|
|
|
|
|
|
class PrioritizedReplayBufferManager(PrioritizedReplayBuffer, ReplayBufferManager):
|
|
"""PrioritizedReplayBufferManager contains a list of PrioritizedReplayBuffer with exactly the same configuration.
|
|
|
|
These replay buffers have contiguous memory layout, and the storage space each
|
|
buffer has is a shallow copy of the topmost memory.
|
|
|
|
:param buffer_list: a list of PrioritizedReplayBuffer needed to be handled.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
|
|
"""
|
|
|
|
def __init__(self, buffer_list: Sequence[PrioritizedReplayBuffer]) -> None:
|
|
ReplayBufferManager.__init__(self, buffer_list) # type: ignore
|
|
kwargs = buffer_list[0].options
|
|
for buf in buffer_list:
|
|
del buf.weight
|
|
PrioritizedReplayBuffer.__init__(self, self.maxsize, **kwargs)
|
|
|
|
|
|
class HERReplayBufferManager(ReplayBufferManager):
|
|
"""HERReplayBufferManager contains a list of HERReplayBuffer with exactly the same configuration.
|
|
|
|
These replay buffers have contiguous memory layout, and the storage space each
|
|
buffer has is a shallow copy of the topmost memory.
|
|
|
|
:param buffer_list: a list of HERReplayBuffer needed to be handled.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
|
|
"""
|
|
|
|
def __init__(self, buffer_list: list[HERReplayBuffer]) -> None:
|
|
super().__init__(buffer_list)
|
|
|
|
def _restore_cache(self) -> None:
|
|
for buf in self.buffers:
|
|
buf._restore_cache()
|
|
|
|
def save_hdf5(self, path: str, compression: str | None = None) -> None:
|
|
self._restore_cache()
|
|
return super().save_hdf5(path, compression)
|
|
|
|
def set_batch(self, batch: RolloutBatchProtocol) -> None:
|
|
self._restore_cache()
|
|
return super().set_batch(batch)
|
|
|
|
def update(self, buffer: Union["HERReplayBuffer", "ReplayBuffer"]) -> np.ndarray:
|
|
self._restore_cache()
|
|
return super().update(buffer)
|
|
|
|
def add(
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
buffer_ids: np.ndarray | list[int] | None = None,
|
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
self._restore_cache()
|
|
return super().add(batch, buffer_ids)
|
|
|
|
|
|
@njit
|
|
def _prev_index(
|
|
index: np.ndarray,
|
|
offset: np.ndarray,
|
|
done: np.ndarray,
|
|
last_index: np.ndarray,
|
|
lengths: np.ndarray,
|
|
) -> np.ndarray:
|
|
index = index % offset[-1]
|
|
prev_index = np.zeros_like(index)
|
|
# disable B905 until strict=True in zip is implemented in numba
|
|
# https://github.com/numba/numba/issues/8943
|
|
for start, end, cur_len, last in zip( # noqa: B905
|
|
offset[:-1],
|
|
offset[1:],
|
|
lengths,
|
|
last_index,
|
|
):
|
|
mask = (start <= index) & (index < end)
|
|
correct_cur_len = max(1, cur_len)
|
|
if np.sum(mask) > 0:
|
|
subind = index[mask]
|
|
subind = (subind - start - 1) % correct_cur_len
|
|
end_flag = done[subind + start] | (subind + start == last)
|
|
prev_index[mask] = (subind + end_flag) % correct_cur_len + start
|
|
return prev_index
|
|
|
|
|
|
@njit
|
|
def _next_index(
|
|
index: np.ndarray,
|
|
offset: np.ndarray,
|
|
done: np.ndarray,
|
|
last_index: np.ndarray,
|
|
lengths: np.ndarray,
|
|
) -> np.ndarray:
|
|
index = index % offset[-1]
|
|
next_index = np.zeros_like(index)
|
|
# disable B905 until strict=True in zip is implemented in numba
|
|
# https://github.com/numba/numba/issues/8943
|
|
for start, end, cur_len, last in zip( # noqa: B905
|
|
offset[:-1],
|
|
offset[1:],
|
|
lengths,
|
|
last_index,
|
|
):
|
|
mask = (start <= index) & (index < end)
|
|
correct_cur_len = max(1, cur_len)
|
|
if np.sum(mask) > 0:
|
|
subind = index[mask]
|
|
end_flag = done[subind] | (subind == last)
|
|
next_index[mask] = (subind - start + 1 - end_flag) % correct_cur_len + start
|
|
return next_index
|