366 lines
13 KiB
Python
366 lines
13 KiB
Python
import gym
|
||
import numpy as np
|
||
from abc import ABC, abstractmethod
|
||
from multiprocessing import Process, Pipe
|
||
from typing import List, Tuple, Union, Optional, Callable, Any
|
||
|
||
try:
|
||
import ray
|
||
except ImportError:
|
||
pass
|
||
|
||
from tianshou.env.utils import CloudpickleWrapper
|
||
|
||
|
||
class BaseVectorEnv(ABC, gym.Env):
|
||
"""Base class for vectorized environments wrapper. Usage:
|
||
::
|
||
|
||
env_num = 8
|
||
envs = VectorEnv([lambda: gym.make(task) for _ in range(env_num)])
|
||
assert len(envs) == env_num
|
||
|
||
It accepts a list of environment generators. In other words, an environment
|
||
generator ``efn`` of a specific task means that ``efn()`` returns the
|
||
environment of the given task, for example, ``gym.make(task)``.
|
||
|
||
All of the VectorEnv must inherit :class:`~tianshou.env.BaseVectorEnv`.
|
||
Here are some other usages:
|
||
::
|
||
|
||
envs.seed(2) # which is equal to the next line
|
||
envs.seed([2, 3, 4, 5, 6, 7, 8, 9]) # set specific seed for each env
|
||
obs = envs.reset() # reset all environments
|
||
obs = envs.reset([0, 5, 7]) # reset 3 specific environments
|
||
obs, rew, done, info = envs.step([1] * 8) # step synchronously
|
||
envs.render() # render all environments
|
||
envs.close() # close all environments
|
||
"""
|
||
|
||
def __init__(self, env_fns: List[Callable[[], gym.Env]]) -> None:
|
||
self._env_fns = env_fns
|
||
self.env_num = len(env_fns)
|
||
self._obs = None
|
||
self._rew = None
|
||
self._done = None
|
||
self._info = None
|
||
|
||
def __len__(self) -> int:
|
||
"""Return len(self), which is the number of environments."""
|
||
return self.env_num
|
||
|
||
def __getattribute__(self, key):
|
||
"""Switch between the default attribute getter or one
|
||
looking at wrapped environment level depending on the key."""
|
||
if key not in ('observation_space', 'action_space'):
|
||
return super().__getattribute__(key)
|
||
else:
|
||
return self.__getattr__(key)
|
||
|
||
@abstractmethod
|
||
def __getattr__(self, key):
|
||
"""Try to retrieve an attribute from each individual wrapped
|
||
environment, if it does not belong to the wrapping vector
|
||
environment class."""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def reset(self, id: Optional[Union[int, List[int]]] = None):
|
||
"""Reset the state of all the environments and return initial
|
||
observations if id is ``None``, otherwise reset the specific
|
||
environments with given id, either an int or a list.
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def step(self, action: np.ndarray
|
||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
||
"""Run one timestep of all the environments’ dynamics. When the end of
|
||
episode is reached, you are responsible for calling reset(id) to reset
|
||
this environment’s state.
|
||
|
||
Accept a batch of action and return a tuple (obs, rew, done, info).
|
||
|
||
:param numpy.ndarray action: a batch of action provided by the agent.
|
||
|
||
:return: A tuple including four items:
|
||
|
||
* ``obs`` a numpy.ndarray, the agent's observation of current \
|
||
environments
|
||
* ``rew`` a numpy.ndarray, the amount of rewards returned after \
|
||
previous actions
|
||
* ``done`` a numpy.ndarray, whether these episodes have ended, in \
|
||
which case further step() calls will return undefined results
|
||
* ``info`` a numpy.ndarray, contains auxiliary diagnostic \
|
||
information (helpful for debugging, and sometimes learning)
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def seed(self, seed: Optional[Union[int, List[int]]] = None) -> List[int]:
|
||
"""Set the seed for all environments.
|
||
|
||
Accept ``None``, an int (which will extend ``i`` to
|
||
``[i, i + 1, i + 2, ...]``) or a list.
|
||
|
||
:return: The list of seeds used in this env's random number \
|
||
generators. The first value in the list should be the "main" seed, or \
|
||
the value which a reproducer pass to "seed".
|
||
"""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def render(self, **kwargs) -> None:
|
||
"""Render all of the environments."""
|
||
pass
|
||
|
||
@abstractmethod
|
||
def close(self) -> None:
|
||
"""Close all of the environments.
|
||
|
||
Environments will automatically close() themselves when garbage
|
||
collected or when the program exits.
|
||
"""
|
||
pass
|
||
|
||
|
||
class VectorEnv(BaseVectorEnv):
|
||
"""Dummy vectorized environment wrapper, implemented in for-loop.
|
||
|
||
.. seealso::
|
||
|
||
Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed
|
||
explanation.
|
||
"""
|
||
|
||
def __init__(self, env_fns: List[Callable[[], gym.Env]]) -> None:
|
||
super().__init__(env_fns)
|
||
self.envs = [_() for _ in env_fns]
|
||
|
||
def __getattr__(self, key):
|
||
return [getattr(env, key) if hasattr(env, key) else None
|
||
for env in self.envs]
|
||
|
||
def reset(self, id: Optional[Union[int, List[int]]] = None) -> np.ndarray:
|
||
if id is None:
|
||
self._obs = np.stack([e.reset() for e in self.envs])
|
||
else:
|
||
if np.isscalar(id):
|
||
id = [id]
|
||
for i in id:
|
||
self._obs[i] = self.envs[i].reset()
|
||
return self._obs
|
||
|
||
def step(self, action: np.ndarray
|
||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
||
assert len(action) == self.env_num
|
||
result = [e.step(a) for e, a in zip(self.envs, action)]
|
||
self._obs, self._rew, self._done, self._info = zip(*result)
|
||
self._obs = np.stack(self._obs)
|
||
self._rew = np.stack(self._rew)
|
||
self._done = np.stack(self._done)
|
||
self._info = np.stack(self._info)
|
||
return self._obs, self._rew, self._done, self._info
|
||
|
||
def seed(self, seed: Optional[Union[int, List[int]]] = None) -> List[int]:
|
||
if np.isscalar(seed):
|
||
seed = [seed + _ for _ in range(self.env_num)]
|
||
elif seed is None:
|
||
seed = [seed] * self.env_num
|
||
result = []
|
||
for e, s in zip(self.envs, seed):
|
||
if hasattr(e, 'seed'):
|
||
result.append(e.seed(s))
|
||
return result
|
||
|
||
def render(self, **kwargs) -> List[Any]:
|
||
result = []
|
||
for e in self.envs:
|
||
if hasattr(e, 'render'):
|
||
result.append(e.render(**kwargs))
|
||
return result
|
||
|
||
def close(self) -> List[Any]:
|
||
return [e.close() for e in self.envs]
|
||
|
||
|
||
def worker(parent, p, env_fn_wrapper):
|
||
parent.close()
|
||
env = env_fn_wrapper.data()
|
||
try:
|
||
while True:
|
||
cmd, data = p.recv()
|
||
if cmd == 'step':
|
||
p.send(env.step(data))
|
||
elif cmd == 'reset':
|
||
p.send(env.reset())
|
||
elif cmd == 'close':
|
||
p.send(env.close())
|
||
p.close()
|
||
break
|
||
elif cmd == 'render':
|
||
p.send(env.render(**data) if hasattr(env, 'render') else None)
|
||
elif cmd == 'seed':
|
||
p.send(env.seed(data) if hasattr(env, 'seed') else None)
|
||
elif cmd == 'getattr':
|
||
p.send(getattr(env, data) if hasattr(env, data) else None)
|
||
else:
|
||
p.close()
|
||
raise NotImplementedError
|
||
except KeyboardInterrupt:
|
||
p.close()
|
||
|
||
|
||
class SubprocVectorEnv(BaseVectorEnv):
|
||
"""Vectorized environment wrapper based on subprocess.
|
||
|
||
.. seealso::
|
||
|
||
Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed
|
||
explanation.
|
||
"""
|
||
|
||
def __init__(self, env_fns: List[Callable[[], gym.Env]]) -> None:
|
||
super().__init__(env_fns)
|
||
self.closed = False
|
||
self.parent_remote, self.child_remote = \
|
||
zip(*[Pipe() for _ in range(self.env_num)])
|
||
self.processes = [
|
||
Process(target=worker, args=(
|
||
parent, child, CloudpickleWrapper(env_fn)), daemon=True)
|
||
for (parent, child, env_fn) in zip(
|
||
self.parent_remote, self.child_remote, env_fns)
|
||
]
|
||
for p in self.processes:
|
||
p.start()
|
||
for c in self.child_remote:
|
||
c.close()
|
||
|
||
def __getattr__(self, key):
|
||
for p in self.parent_remote:
|
||
p.send(['getattr', key])
|
||
return [p.recv() for p in self.parent_remote]
|
||
|
||
def step(self, action: np.ndarray
|
||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
||
assert len(action) == self.env_num
|
||
for p, a in zip(self.parent_remote, action):
|
||
p.send(['step', a])
|
||
result = [p.recv() for p in self.parent_remote]
|
||
self._obs, self._rew, self._done, self._info = zip(*result)
|
||
self._obs = np.stack(self._obs)
|
||
self._rew = np.stack(self._rew)
|
||
self._done = np.stack(self._done)
|
||
self._info = np.stack(self._info)
|
||
return self._obs, self._rew, self._done, self._info
|
||
|
||
def reset(self, id: Optional[Union[int, List[int]]] = None) -> np.ndarray:
|
||
if id is None:
|
||
for p in self.parent_remote:
|
||
p.send(['reset', None])
|
||
self._obs = np.stack([p.recv() for p in self.parent_remote])
|
||
return self._obs
|
||
else:
|
||
if np.isscalar(id):
|
||
id = [id]
|
||
for i in id:
|
||
self.parent_remote[i].send(['reset', None])
|
||
for i in id:
|
||
self._obs[i] = self.parent_remote[i].recv()
|
||
return self._obs
|
||
|
||
def seed(self, seed: Optional[Union[int, List[int]]] = None) -> List[int]:
|
||
if np.isscalar(seed):
|
||
seed = [seed + _ for _ in range(self.env_num)]
|
||
elif seed is None:
|
||
seed = [seed] * self.env_num
|
||
for p, s in zip(self.parent_remote, seed):
|
||
p.send(['seed', s])
|
||
return [p.recv() for p in self.parent_remote]
|
||
|
||
def render(self, **kwargs) -> List[Any]:
|
||
for p in self.parent_remote:
|
||
p.send(['render', kwargs])
|
||
return [p.recv() for p in self.parent_remote]
|
||
|
||
def close(self) -> List[Any]:
|
||
if self.closed:
|
||
return []
|
||
for p in self.parent_remote:
|
||
p.send(['close', None])
|
||
result = [p.recv() for p in self.parent_remote]
|
||
self.closed = True
|
||
for p in self.processes:
|
||
p.join()
|
||
return result
|
||
|
||
|
||
class RayVectorEnv(BaseVectorEnv):
|
||
"""Vectorized environment wrapper based on
|
||
`ray <https://github.com/ray-project/ray>`_. However, according to our
|
||
test, it is about two times slower than
|
||
:class:`~tianshou.env.SubprocVectorEnv`.
|
||
|
||
.. seealso::
|
||
|
||
Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed
|
||
explanation.
|
||
"""
|
||
|
||
def __init__(self, env_fns: List[Callable[[], gym.Env]]) -> None:
|
||
super().__init__(env_fns)
|
||
try:
|
||
if not ray.is_initialized():
|
||
ray.init()
|
||
except NameError:
|
||
raise ImportError(
|
||
'Please install ray to support RayVectorEnv: pip3 install ray')
|
||
self.envs = [
|
||
ray.remote(gym.Wrapper).options(num_cpus=0).remote(e())
|
||
for e in env_fns]
|
||
|
||
def __getattr__(self, key):
|
||
return ray.get([e.getattr.remote(key) for e in self.envs])
|
||
|
||
def step(self, action: np.ndarray
|
||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
||
assert len(action) == self.env_num
|
||
result = ray.get([e.step.remote(a) for e, a in zip(self.envs, action)])
|
||
self._obs, self._rew, self._done, self._info = zip(*result)
|
||
self._obs = np.stack(self._obs)
|
||
self._rew = np.stack(self._rew)
|
||
self._done = np.stack(self._done)
|
||
self._info = np.stack(self._info)
|
||
return self._obs, self._rew, self._done, self._info
|
||
|
||
def reset(self, id: Optional[Union[int, List[int]]] = None) -> np.ndarray:
|
||
if id is None:
|
||
result_obj = [e.reset.remote() for e in self.envs]
|
||
self._obs = np.stack(ray.get(result_obj))
|
||
else:
|
||
result_obj = []
|
||
if np.isscalar(id):
|
||
id = [id]
|
||
for i in id:
|
||
result_obj.append(self.envs[i].reset.remote())
|
||
for _, i in enumerate(id):
|
||
self._obs[i] = ray.get(result_obj[_])
|
||
return self._obs
|
||
|
||
def seed(self, seed: Optional[Union[int, List[int]]] = None) -> List[int]:
|
||
if not hasattr(self.envs[0], 'seed'):
|
||
return []
|
||
if np.isscalar(seed):
|
||
seed = [seed + _ for _ in range(self.env_num)]
|
||
elif seed is None:
|
||
seed = [seed] * self.env_num
|
||
return ray.get([e.seed.remote(s) for e, s in zip(self.envs, seed)])
|
||
|
||
def render(self, **kwargs) -> List[Any]:
|
||
if not hasattr(self.envs[0], 'render'):
|
||
return [None for e in self.envs]
|
||
return ray.get([e.render.remote(**kwargs) for e in self.envs])
|
||
|
||
def close(self) -> List[Any]:
|
||
return ray.get([e.close.remote() for e in self.envs])
|