53 lines
1.6 KiB
Python
53 lines
1.6 KiB
Python
from typing import Any, Callable, List, Optional, Tuple, Union
|
|
|
|
import gym
|
|
import numpy as np
|
|
|
|
from tianshou.env.worker import EnvWorker
|
|
|
|
|
|
class DummyEnvWorker(EnvWorker):
|
|
"""Dummy worker used in sequential vector environments."""
|
|
|
|
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
|
|
self.env = env_fn()
|
|
super().__init__(env_fn)
|
|
|
|
def get_env_attr(self, key: str) -> Any:
|
|
return getattr(self.env, key)
|
|
|
|
def set_env_attr(self, key: str, value: Any) -> None:
|
|
setattr(self.env.unwrapped, key, value)
|
|
|
|
def reset(self, **kwargs: Any) -> Union[np.ndarray, Tuple[np.ndarray, dict]]:
|
|
if "seed" in kwargs:
|
|
super().seed(kwargs["seed"])
|
|
return self.env.reset(**kwargs)
|
|
|
|
@staticmethod
|
|
def wait( # type: ignore
|
|
workers: List["DummyEnvWorker"], wait_num: int, timeout: Optional[float] = None
|
|
) -> List["DummyEnvWorker"]:
|
|
# Sequential EnvWorker objects are always ready
|
|
return workers
|
|
|
|
def send(self, action: Optional[np.ndarray], **kwargs: Any) -> None:
|
|
if action is None:
|
|
self.result = self.env.reset(**kwargs)
|
|
else:
|
|
self.result = self.env.step(action) # type: ignore
|
|
|
|
def seed(self, seed: Optional[int] = None) -> Optional[List[int]]:
|
|
super().seed(seed)
|
|
try:
|
|
return self.env.seed(seed)
|
|
except NotImplementedError:
|
|
self.env.reset(seed=seed)
|
|
return [seed] # type: ignore
|
|
|
|
def render(self, **kwargs: Any) -> Any:
|
|
return self.env.render(**kwargs)
|
|
|
|
def close_env(self) -> None:
|
|
self.env.close()
|