- add RainbowPolicy - add `set_beta` method in prio_buffer - add NoisyLinear in utils/network
735 lines
29 KiB
Python
735 lines
29 KiB
Python
import os
|
|
import h5py
|
|
import torch
|
|
import pickle
|
|
import pytest
|
|
import tempfile
|
|
import numpy as np
|
|
from timeit import timeit
|
|
|
|
from tianshou.data.utils.converter import to_hdf5
|
|
from tianshou.data import Batch, SegmentTree, ReplayBuffer
|
|
from tianshou.data import PrioritizedReplayBuffer
|
|
from tianshou.data import VectorReplayBuffer, CachedReplayBuffer
|
|
from tianshou.data import PrioritizedVectorReplayBuffer
|
|
|
|
|
|
if __name__ == '__main__':
|
|
from env import MyTestEnv
|
|
else: # pytest
|
|
from test.base.env import MyTestEnv
|
|
|
|
|
|
def test_replaybuffer(size=10, bufsize=20):
|
|
env = MyTestEnv(size)
|
|
buf = ReplayBuffer(bufsize)
|
|
buf.update(buf)
|
|
assert str(buf) == buf.__class__.__name__ + '()'
|
|
obs = env.reset()
|
|
action_list = [1] * 5 + [0] * 10 + [1] * 10
|
|
for i, a in enumerate(action_list):
|
|
obs_next, rew, done, info = env.step(a)
|
|
buf.add(Batch(obs=obs, act=[a], rew=rew,
|
|
done=done, obs_next=obs_next, info=info))
|
|
obs = obs_next
|
|
assert len(buf) == min(bufsize, i + 1)
|
|
assert buf.act.dtype == int
|
|
assert buf.act.shape == (bufsize, 1)
|
|
data, indices = buf.sample(bufsize * 2)
|
|
assert (indices < len(buf)).all()
|
|
assert (data.obs < size).all()
|
|
assert (0 <= data.done).all() and (data.done <= 1).all()
|
|
b = ReplayBuffer(size=10)
|
|
# neg bsz should return empty index
|
|
assert b.sample_indices(-1).tolist() == []
|
|
ptr, ep_rew, ep_len, ep_idx = b.add(
|
|
Batch(obs=1, act=1, rew=1, done=1, obs_next='str',
|
|
info={'a': 3, 'b': {'c': 5.0}}))
|
|
assert b.obs[0] == 1
|
|
assert b.done[0]
|
|
assert b.obs_next[0] == 'str'
|
|
assert np.all(b.obs[1:] == 0)
|
|
assert np.all(b.obs_next[1:] == np.array(None))
|
|
assert b.info.a[0] == 3 and b.info.a.dtype == int
|
|
assert np.all(b.info.a[1:] == 0)
|
|
assert b.info.b.c[0] == 5.0 and b.info.b.c.dtype == float
|
|
assert np.all(b.info.b.c[1:] == 0.0)
|
|
assert ptr.shape == (1,) and ptr[0] == 0
|
|
assert ep_rew.shape == (1,) and ep_rew[0] == 1
|
|
assert ep_len.shape == (1,) and ep_len[0] == 1
|
|
assert ep_idx.shape == (1,) and ep_idx[0] == 0
|
|
# test extra keys pop up, the buffer should handle it dynamically
|
|
batch = Batch(obs=2, act=2, rew=2, done=0, obs_next="str2",
|
|
info={"a": 4, "d": {"e": -np.inf}})
|
|
b.add(batch)
|
|
info_keys = ["a", "b", "d"]
|
|
assert set(b.info.keys()) == set(info_keys)
|
|
assert b.info.a[1] == 4 and b.info.b.c[1] == 0
|
|
assert b.info.d.e[1] == -np.inf
|
|
# test batch-style adding method, where len(batch) == 1
|
|
batch.done = [1]
|
|
batch.info.e = np.zeros([1, 4])
|
|
batch = Batch.stack([batch])
|
|
ptr, ep_rew, ep_len, ep_idx = b.add(batch, buffer_ids=[0])
|
|
assert ptr.shape == (1,) and ptr[0] == 2
|
|
assert ep_rew.shape == (1,) and ep_rew[0] == 4
|
|
assert ep_len.shape == (1,) and ep_len[0] == 2
|
|
assert ep_idx.shape == (1,) and ep_idx[0] == 1
|
|
assert set(b.info.keys()) == set(info_keys + ["e"])
|
|
assert b.info.e.shape == (b.maxsize, 1, 4)
|
|
with pytest.raises(IndexError):
|
|
b[22]
|
|
# test prev / next
|
|
assert np.all(b.prev(np.array([0, 1, 2])) == [0, 1, 1])
|
|
assert np.all(b.next(np.array([0, 1, 2])) == [0, 2, 2])
|
|
batch.done = [0]
|
|
b.add(batch, buffer_ids=[0])
|
|
assert np.all(b.prev(np.array([0, 1, 2, 3])) == [0, 1, 1, 3])
|
|
assert np.all(b.next(np.array([0, 1, 2, 3])) == [0, 2, 2, 3])
|
|
|
|
|
|
def test_ignore_obs_next(size=10):
|
|
# Issue 82
|
|
buf = ReplayBuffer(size, ignore_obs_next=True)
|
|
for i in range(size):
|
|
buf.add(Batch(obs={'mask1': np.array([i, 1, 1, 0, 0]),
|
|
'mask2': np.array([i + 4, 0, 1, 0, 0]),
|
|
'mask': i},
|
|
act={'act_id': i,
|
|
'position_id': i + 3},
|
|
rew=i,
|
|
done=i % 3 == 0,
|
|
info={'if': i}))
|
|
indices = np.arange(len(buf))
|
|
orig = np.arange(len(buf))
|
|
data = buf[indices]
|
|
data2 = buf[indices]
|
|
assert isinstance(data, Batch)
|
|
assert isinstance(data2, Batch)
|
|
assert np.allclose(indices, orig)
|
|
assert np.allclose(data.obs_next.mask, data2.obs_next.mask)
|
|
assert np.allclose(data.obs_next.mask, [0, 2, 3, 3, 5, 6, 6, 8, 9, 9])
|
|
buf.stack_num = 4
|
|
data = buf[indices]
|
|
data2 = buf[indices]
|
|
assert np.allclose(data.obs_next.mask, data2.obs_next.mask)
|
|
assert np.allclose(data.obs_next.mask, np.array([
|
|
[0, 0, 0, 0], [1, 1, 1, 2], [1, 1, 2, 3], [1, 1, 2, 3],
|
|
[4, 4, 4, 5], [4, 4, 5, 6], [4, 4, 5, 6],
|
|
[7, 7, 7, 8], [7, 7, 8, 9], [7, 7, 8, 9]]))
|
|
assert np.allclose(data.info['if'], data2.info['if'])
|
|
assert np.allclose(data.info['if'], np.array([
|
|
[0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 3],
|
|
[4, 4, 4, 4], [4, 4, 4, 5], [4, 4, 5, 6],
|
|
[7, 7, 7, 7], [7, 7, 7, 8], [7, 7, 8, 9]]))
|
|
assert data.obs_next
|
|
|
|
|
|
def test_stack(size=5, bufsize=9, stack_num=4, cached_num=3):
|
|
env = MyTestEnv(size)
|
|
buf = ReplayBuffer(bufsize, stack_num=stack_num)
|
|
buf2 = ReplayBuffer(bufsize, stack_num=stack_num, sample_avail=True)
|
|
buf3 = ReplayBuffer(bufsize, stack_num=stack_num, save_only_last_obs=True)
|
|
obs = env.reset(1)
|
|
for i in range(16):
|
|
obs_next, rew, done, info = env.step(1)
|
|
buf.add(Batch(obs=obs, act=1, rew=rew, done=done, info=info))
|
|
buf2.add(Batch(obs=obs, act=1, rew=rew, done=done, info=info))
|
|
buf3.add(Batch(obs=[obs, obs, obs], act=1, rew=rew,
|
|
done=done, obs_next=[obs, obs], info=info))
|
|
obs = obs_next
|
|
if done:
|
|
obs = env.reset(1)
|
|
indices = np.arange(len(buf))
|
|
assert np.allclose(buf.get(indices, 'obs')[..., 0], [
|
|
[1, 1, 1, 2], [1, 1, 2, 3], [1, 2, 3, 4],
|
|
[1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 3],
|
|
[1, 2, 3, 4], [4, 4, 4, 4], [1, 1, 1, 1]])
|
|
assert np.allclose(buf.get(indices, 'obs'), buf3.get(indices, 'obs'))
|
|
assert np.allclose(buf.get(indices, 'obs'), buf3.get(indices, 'obs_next'))
|
|
_, indices = buf2.sample(0)
|
|
assert indices.tolist() == [2, 6]
|
|
_, indices = buf2.sample(1)
|
|
assert indices[0] in [2, 6]
|
|
batch, indices = buf2.sample(-1) # neg bsz -> no data
|
|
assert indices.tolist() == [] and len(batch) == 0
|
|
with pytest.raises(IndexError):
|
|
buf[bufsize * 2]
|
|
|
|
|
|
def test_priortized_replaybuffer(size=32, bufsize=15):
|
|
env = MyTestEnv(size)
|
|
buf = PrioritizedReplayBuffer(bufsize, 0.5, 0.5)
|
|
buf2 = PrioritizedVectorReplayBuffer(bufsize, buffer_num=3, alpha=0.5, beta=0.5)
|
|
obs = env.reset()
|
|
action_list = [1] * 5 + [0] * 10 + [1] * 10
|
|
for i, a in enumerate(action_list):
|
|
obs_next, rew, done, info = env.step(a)
|
|
batch = Batch(obs=obs, act=a, rew=rew, done=done, obs_next=obs_next,
|
|
info=info, policy=np.random.randn() - 0.5)
|
|
batch_stack = Batch.stack([batch, batch, batch])
|
|
buf.add(Batch.stack([batch]), buffer_ids=[0])
|
|
buf2.add(batch_stack, buffer_ids=[0, 1, 2])
|
|
obs = obs_next
|
|
data, indices = buf.sample(len(buf) // 2)
|
|
if len(buf) // 2 == 0:
|
|
assert len(data) == len(buf)
|
|
else:
|
|
assert len(data) == len(buf) // 2
|
|
assert len(buf) == min(bufsize, i + 1)
|
|
assert len(buf2) == min(bufsize, 3 * (i + 1))
|
|
# check single buffer's data
|
|
assert buf.info.key.shape == (buf.maxsize,)
|
|
assert buf.rew.dtype == float
|
|
assert buf.done.dtype == bool
|
|
data, indices = buf.sample(len(buf) // 2)
|
|
buf.update_weight(indices, -data.weight / 2)
|
|
assert np.allclose(buf.weight[indices], np.abs(-data.weight / 2) ** buf._alpha)
|
|
# check multi buffer's data
|
|
assert np.allclose(buf2[np.arange(buf2.maxsize)].weight, 1)
|
|
batch, indices = buf2.sample(10)
|
|
buf2.update_weight(indices, batch.weight * 0)
|
|
weight = buf2[np.arange(buf2.maxsize)].weight
|
|
mask = np.isin(np.arange(buf2.maxsize), indices)
|
|
assert np.all(weight[mask] == weight[mask][0])
|
|
assert np.all(weight[~mask] == weight[~mask][0])
|
|
assert weight[~mask][0] < weight[mask][0] and weight[mask][0] <= 1
|
|
|
|
|
|
def test_update():
|
|
buf1 = ReplayBuffer(4, stack_num=2)
|
|
buf2 = ReplayBuffer(4, stack_num=2)
|
|
for i in range(5):
|
|
buf1.add(Batch(obs=np.array([i]), act=float(i), rew=i * i,
|
|
done=i % 2 == 0, info={'incident': 'found'}))
|
|
assert len(buf1) > len(buf2)
|
|
buf2.update(buf1)
|
|
assert len(buf1) == len(buf2)
|
|
assert (buf2[0].obs == buf1[1].obs).all()
|
|
assert (buf2[-1].obs == buf1[0].obs).all()
|
|
b = CachedReplayBuffer(ReplayBuffer(10), 4, 5)
|
|
with pytest.raises(NotImplementedError):
|
|
b.update(b)
|
|
|
|
|
|
def test_segtree():
|
|
realop = np.sum
|
|
# small test
|
|
actual_len = 8
|
|
tree = SegmentTree(actual_len) # 1-15. 8-15 are leaf nodes
|
|
assert len(tree) == actual_len
|
|
assert np.all([tree[i] == 0. for i in range(actual_len)])
|
|
with pytest.raises(IndexError):
|
|
tree[actual_len]
|
|
naive = np.zeros([actual_len])
|
|
for _ in range(1000):
|
|
# random choose a place to perform single update
|
|
index = np.random.randint(actual_len)
|
|
value = np.random.rand()
|
|
naive[index] = value
|
|
tree[index] = value
|
|
for i in range(actual_len):
|
|
for j in range(i + 1, actual_len):
|
|
ref = realop(naive[i:j])
|
|
out = tree.reduce(i, j)
|
|
assert np.allclose(ref, out), (ref, out)
|
|
assert np.allclose(tree.reduce(start=1), realop(naive[1:]))
|
|
assert np.allclose(tree.reduce(end=-1), realop(naive[:-1]))
|
|
# batch setitem
|
|
for _ in range(1000):
|
|
index = np.random.choice(actual_len, size=4)
|
|
value = np.random.rand(4)
|
|
naive[index] = value
|
|
tree[index] = value
|
|
assert np.allclose(realop(naive), tree.reduce())
|
|
for i in range(10):
|
|
left = np.random.randint(actual_len)
|
|
right = np.random.randint(left + 1, actual_len + 1)
|
|
assert np.allclose(realop(naive[left:right]),
|
|
tree.reduce(left, right))
|
|
# large test
|
|
actual_len = 16384
|
|
tree = SegmentTree(actual_len)
|
|
naive = np.zeros([actual_len])
|
|
for _ in range(1000):
|
|
index = np.random.choice(actual_len, size=64)
|
|
value = np.random.rand(64)
|
|
naive[index] = value
|
|
tree[index] = value
|
|
assert np.allclose(realop(naive), tree.reduce())
|
|
for i in range(10):
|
|
left = np.random.randint(actual_len)
|
|
right = np.random.randint(left + 1, actual_len + 1)
|
|
assert np.allclose(realop(naive[left:right]),
|
|
tree.reduce(left, right))
|
|
|
|
# test prefix-sum-idx
|
|
actual_len = 8
|
|
tree = SegmentTree(actual_len)
|
|
naive = np.random.rand(actual_len)
|
|
tree[np.arange(actual_len)] = naive
|
|
for _ in range(1000):
|
|
scalar = np.random.rand() * naive.sum()
|
|
index = tree.get_prefix_sum_idx(scalar)
|
|
assert naive[:index].sum() <= scalar <= naive[:index + 1].sum()
|
|
# corner case here
|
|
naive = np.ones(actual_len, int)
|
|
tree[np.arange(actual_len)] = naive
|
|
for scalar in range(actual_len):
|
|
index = tree.get_prefix_sum_idx(scalar * 1.)
|
|
assert naive[:index].sum() <= scalar <= naive[:index + 1].sum()
|
|
tree = SegmentTree(10)
|
|
tree[np.arange(3)] = np.array([0.1, 0, 0.1])
|
|
assert np.allclose(tree.get_prefix_sum_idx(
|
|
np.array([0, .1, .1 + 1e-6, .2 - 1e-6])), [0, 0, 2, 2])
|
|
with pytest.raises(AssertionError):
|
|
tree.get_prefix_sum_idx(.2)
|
|
# test large prefix-sum-idx
|
|
actual_len = 16384
|
|
tree = SegmentTree(actual_len)
|
|
naive = np.random.rand(actual_len)
|
|
tree[np.arange(actual_len)] = naive
|
|
for _ in range(1000):
|
|
scalar = np.random.rand() * naive.sum()
|
|
index = tree.get_prefix_sum_idx(scalar)
|
|
assert naive[:index].sum() <= scalar <= naive[:index + 1].sum()
|
|
|
|
# profile
|
|
if __name__ == '__main__':
|
|
size = 100000
|
|
bsz = 64
|
|
naive = np.random.rand(size)
|
|
tree = SegmentTree(size)
|
|
tree[np.arange(size)] = naive
|
|
|
|
def sample_npbuf():
|
|
return np.random.choice(size, bsz, p=naive / naive.sum())
|
|
|
|
def sample_tree():
|
|
scalar = np.random.rand(bsz) * tree.reduce()
|
|
return tree.get_prefix_sum_idx(scalar)
|
|
|
|
print('npbuf', timeit(sample_npbuf, setup=sample_npbuf, number=1000))
|
|
print('tree', timeit(sample_tree, setup=sample_tree, number=1000))
|
|
|
|
|
|
def test_pickle():
|
|
size = 100
|
|
vbuf = ReplayBuffer(size, stack_num=2)
|
|
pbuf = PrioritizedReplayBuffer(size, 0.6, 0.4)
|
|
rew = np.array([1, 1])
|
|
for i in range(4):
|
|
vbuf.add(Batch(obs=Batch(index=np.array([i])), act=0, rew=rew, done=0))
|
|
for i in range(5):
|
|
pbuf.add(Batch(obs=Batch(index=np.array([i])),
|
|
act=2, rew=rew, done=0, info=np.random.rand()))
|
|
# save & load
|
|
_vbuf = pickle.loads(pickle.dumps(vbuf))
|
|
_pbuf = pickle.loads(pickle.dumps(pbuf))
|
|
assert len(_vbuf) == len(vbuf) and np.allclose(_vbuf.act, vbuf.act)
|
|
assert len(_pbuf) == len(pbuf) and np.allclose(_pbuf.act, pbuf.act)
|
|
# make sure the meta var is identical
|
|
assert _vbuf.stack_num == vbuf.stack_num
|
|
assert np.allclose(_pbuf.weight[np.arange(len(_pbuf))],
|
|
pbuf.weight[np.arange(len(pbuf))])
|
|
|
|
|
|
def test_hdf5():
|
|
size = 100
|
|
buffers = {
|
|
"array": ReplayBuffer(size, stack_num=2),
|
|
"prioritized": PrioritizedReplayBuffer(size, 0.6, 0.4),
|
|
}
|
|
buffer_types = {k: b.__class__ for k, b in buffers.items()}
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
info_t = torch.tensor([1.]).to(device)
|
|
for i in range(4):
|
|
kwargs = {
|
|
'obs': Batch(index=np.array([i])),
|
|
'act': i,
|
|
'rew': np.array([1, 2]),
|
|
'done': i % 3 == 2,
|
|
'info': {"number": {"n": i, "t": info_t}, 'extra': None},
|
|
}
|
|
buffers["array"].add(Batch(kwargs))
|
|
buffers["prioritized"].add(Batch(kwargs))
|
|
|
|
# save
|
|
paths = {}
|
|
for k, buf in buffers.items():
|
|
f, path = tempfile.mkstemp(suffix='.hdf5')
|
|
os.close(f)
|
|
buf.save_hdf5(path)
|
|
paths[k] = path
|
|
|
|
# load replay buffer
|
|
_buffers = {k: buffer_types[k].load_hdf5(paths[k]) for k in paths.keys()}
|
|
|
|
# compare
|
|
for k in buffers.keys():
|
|
assert len(_buffers[k]) == len(buffers[k])
|
|
assert np.allclose(_buffers[k].act, buffers[k].act)
|
|
assert _buffers[k].stack_num == buffers[k].stack_num
|
|
assert _buffers[k].maxsize == buffers[k].maxsize
|
|
assert np.all(_buffers[k]._indices == buffers[k]._indices)
|
|
for k in ["array", "prioritized"]:
|
|
assert _buffers[k]._index == buffers[k]._index
|
|
assert isinstance(buffers[k].get(0, "info"), Batch)
|
|
assert isinstance(_buffers[k].get(0, "info"), Batch)
|
|
for k in ["array"]:
|
|
assert np.all(
|
|
buffers[k][:].info.number.n == _buffers[k][:].info.number.n)
|
|
assert np.all(
|
|
buffers[k][:].info.extra == _buffers[k][:].info.extra)
|
|
|
|
# raise exception when value cannot be pickled
|
|
data = {"not_supported": lambda x: x * x}
|
|
grp = h5py.Group
|
|
with pytest.raises(NotImplementedError):
|
|
to_hdf5(data, grp)
|
|
# ndarray with data type not supported by HDF5 that cannot be pickled
|
|
data = {"not_supported": np.array(lambda x: x * x)}
|
|
grp = h5py.Group
|
|
with pytest.raises(RuntimeError):
|
|
to_hdf5(data, grp)
|
|
|
|
|
|
def test_replaybuffermanager():
|
|
buf = VectorReplayBuffer(20, 4)
|
|
batch = Batch(obs=[1, 2, 3], act=[1, 2, 3], rew=[1, 2, 3], done=[0, 0, 1])
|
|
ptr, ep_rew, ep_len, ep_idx = buf.add(batch, buffer_ids=[0, 1, 2])
|
|
assert np.all(ep_len == [0, 0, 1]) and np.all(ep_rew == [0, 0, 3])
|
|
assert np.all(ptr == [0, 5, 10]) and np.all(ep_idx == [0, 5, 10])
|
|
with pytest.raises(NotImplementedError):
|
|
# ReplayBufferManager cannot be updated
|
|
buf.update(buf)
|
|
# sample index / prev / next / unfinished_index
|
|
indices = buf.sample_indices(11000)
|
|
assert np.bincount(indices)[[0, 5, 10]].min() >= 3000 # uniform sample
|
|
batch, indices = buf.sample(0)
|
|
assert np.allclose(indices, [0, 5, 10])
|
|
indices_prev = buf.prev(indices)
|
|
assert np.allclose(indices_prev, indices), indices_prev
|
|
indices_next = buf.next(indices)
|
|
assert np.allclose(indices_next, indices), indices_next
|
|
assert np.allclose(buf.unfinished_index(), [0, 5])
|
|
buf.add(Batch(obs=[4], act=[4], rew=[4], done=[1]), buffer_ids=[3])
|
|
assert np.allclose(buf.unfinished_index(), [0, 5])
|
|
batch, indices = buf.sample(10)
|
|
batch, indices = buf.sample(0)
|
|
assert np.allclose(indices, [0, 5, 10, 15])
|
|
indices_prev = buf.prev(indices)
|
|
assert np.allclose(indices_prev, indices), indices_prev
|
|
indices_next = buf.next(indices)
|
|
assert np.allclose(indices_next, indices), indices_next
|
|
data = np.array([0, 0, 0, 0])
|
|
buf.add(Batch(obs=data, act=data, rew=data, done=data),
|
|
buffer_ids=[0, 1, 2, 3])
|
|
buf.add(Batch(obs=data, act=data, rew=data, done=1 - data),
|
|
buffer_ids=[0, 1, 2, 3])
|
|
assert len(buf) == 12
|
|
buf.add(Batch(obs=data, act=data, rew=data, done=data),
|
|
buffer_ids=[0, 1, 2, 3])
|
|
buf.add(Batch(obs=data, act=data, rew=data, done=[0, 1, 0, 1]),
|
|
buffer_ids=[0, 1, 2, 3])
|
|
assert len(buf) == 20
|
|
indices = buf.sample_indices(120000)
|
|
assert np.bincount(indices).min() >= 5000
|
|
batch, indices = buf.sample(10)
|
|
indices = buf.sample_indices(0)
|
|
assert np.allclose(indices, np.arange(len(buf)))
|
|
# check the actual data stored in buf._meta
|
|
assert np.allclose(buf.done, [
|
|
0, 0, 1, 0, 0,
|
|
0, 0, 1, 0, 1,
|
|
1, 0, 1, 0, 0,
|
|
1, 0, 1, 0, 1,
|
|
])
|
|
assert np.allclose(buf.prev(indices), [
|
|
0, 0, 1, 3, 3,
|
|
5, 5, 6, 8, 8,
|
|
10, 11, 11, 13, 13,
|
|
15, 16, 16, 18, 18,
|
|
])
|
|
assert np.allclose(buf.next(indices), [
|
|
1, 2, 2, 4, 4,
|
|
6, 7, 7, 9, 9,
|
|
10, 12, 12, 14, 14,
|
|
15, 17, 17, 19, 19,
|
|
])
|
|
assert np.allclose(buf.unfinished_index(), [4, 14])
|
|
ptr, ep_rew, ep_len, ep_idx = buf.add(
|
|
Batch(obs=[1], act=[1], rew=[1], done=[1]), buffer_ids=[2])
|
|
assert np.all(ep_len == [3]) and np.all(ep_rew == [1])
|
|
assert np.all(ptr == [10]) and np.all(ep_idx == [13])
|
|
assert np.allclose(buf.unfinished_index(), [4])
|
|
indices = list(sorted(buf.sample_indices(0)))
|
|
assert np.allclose(indices, np.arange(len(buf)))
|
|
assert np.allclose(buf.prev(indices), [
|
|
0, 0, 1, 3, 3,
|
|
5, 5, 6, 8, 8,
|
|
14, 11, 11, 13, 13,
|
|
15, 16, 16, 18, 18,
|
|
])
|
|
assert np.allclose(buf.next(indices), [
|
|
1, 2, 2, 4, 4,
|
|
6, 7, 7, 9, 9,
|
|
10, 12, 12, 14, 10,
|
|
15, 17, 17, 19, 19,
|
|
])
|
|
# corner case: list, int and -1
|
|
assert buf.prev(-1) == buf.prev([buf.maxsize - 1])[0]
|
|
assert buf.next(-1) == buf.next([buf.maxsize - 1])[0]
|
|
batch = buf._meta
|
|
batch.info = np.ones(buf.maxsize)
|
|
buf.set_batch(batch)
|
|
assert np.allclose(buf.buffers[-1].info, [1] * 5)
|
|
assert buf.sample_indices(-1).tolist() == []
|
|
assert np.array([ReplayBuffer(0, ignore_obs_next=True)]).dtype == object
|
|
|
|
|
|
def test_cachedbuffer():
|
|
buf = CachedReplayBuffer(ReplayBuffer(10), 4, 5)
|
|
assert buf.sample_indices(0).tolist() == []
|
|
# check the normal function/usage/storage in CachedReplayBuffer
|
|
ptr, ep_rew, ep_len, ep_idx = buf.add(
|
|
Batch(obs=[1], act=[1], rew=[1], done=[0]), buffer_ids=[1])
|
|
obs = np.zeros(buf.maxsize)
|
|
obs[15] = 1
|
|
indices = buf.sample_indices(0)
|
|
assert np.allclose(indices, [15])
|
|
assert np.allclose(buf.prev(indices), [15])
|
|
assert np.allclose(buf.next(indices), [15])
|
|
assert np.allclose(buf.obs, obs)
|
|
assert np.all(ep_len == [0]) and np.all(ep_rew == [0.0])
|
|
assert np.all(ptr == [15]) and np.all(ep_idx == [15])
|
|
ptr, ep_rew, ep_len, ep_idx = buf.add(
|
|
Batch(obs=[2], act=[2], rew=[2], done=[1]), buffer_ids=[3])
|
|
obs[[0, 25]] = 2
|
|
indices = buf.sample_indices(0)
|
|
assert np.allclose(indices, [0, 15])
|
|
assert np.allclose(buf.prev(indices), [0, 15])
|
|
assert np.allclose(buf.next(indices), [0, 15])
|
|
assert np.allclose(buf.obs, obs)
|
|
assert np.all(ep_len == [1]) and np.all(ep_rew == [2.0])
|
|
assert np.all(ptr == [0]) and np.all(ep_idx == [0])
|
|
assert np.allclose(buf.unfinished_index(), [15])
|
|
assert np.allclose(buf.sample_indices(0), [0, 15])
|
|
ptr, ep_rew, ep_len, ep_idx = buf.add(
|
|
Batch(obs=[3, 4], act=[3, 4], rew=[3, 4], done=[0, 1]),
|
|
buffer_ids=[3, 1])
|
|
assert np.all(ep_len == [0, 2]) and np.all(ep_rew == [0, 5.0])
|
|
assert np.all(ptr == [25, 2]) and np.all(ep_idx == [25, 1])
|
|
obs[[0, 1, 2, 15, 16, 25]] = [2, 1, 4, 1, 4, 3]
|
|
assert np.allclose(buf.obs, obs)
|
|
assert np.allclose(buf.unfinished_index(), [25])
|
|
indices = buf.sample_indices(0)
|
|
assert np.allclose(indices, [0, 1, 2, 25])
|
|
assert np.allclose(buf.done[indices], [1, 0, 1, 0])
|
|
assert np.allclose(buf.prev(indices), [0, 1, 1, 25])
|
|
assert np.allclose(buf.next(indices), [0, 2, 2, 25])
|
|
indices = buf.sample_indices(10000)
|
|
assert np.bincount(indices)[[0, 1, 2, 25]].min() > 2000 # uniform sample
|
|
# cached buffer with main_buffer size == 0 (no update)
|
|
# used in test_collector
|
|
buf = CachedReplayBuffer(ReplayBuffer(0, sample_avail=True), 4, 5)
|
|
data = np.zeros(4)
|
|
rew = np.ones([4, 4])
|
|
buf.add(Batch(obs=data, act=data, rew=rew, done=[0, 0, 1, 1]))
|
|
buf.add(Batch(obs=data, act=data, rew=rew, done=[0, 0, 0, 0]))
|
|
buf.add(Batch(obs=data, act=data, rew=rew, done=[1, 1, 1, 1]))
|
|
buf.add(Batch(obs=data, act=data, rew=rew, done=[0, 0, 0, 0]))
|
|
ptr, ep_rew, ep_len, ep_idx = buf.add(
|
|
Batch(obs=data, act=data, rew=rew, done=[0, 1, 0, 1]))
|
|
assert np.all(ptr == [1, -1, 11, -1]) and np.all(ep_idx == [0, -1, 10, -1])
|
|
assert np.all(ep_len == [0, 2, 0, 2])
|
|
assert np.all(ep_rew == [data, data + 2, data, data + 2])
|
|
assert np.allclose(buf.done, [
|
|
0, 0, 1, 0, 0,
|
|
0, 1, 1, 0, 0,
|
|
0, 0, 0, 0, 0,
|
|
0, 1, 0, 0, 0,
|
|
])
|
|
indices = buf.sample_indices(0)
|
|
assert np.allclose(indices, [0, 1, 10, 11])
|
|
assert np.allclose(buf.prev(indices), [0, 0, 10, 10])
|
|
assert np.allclose(buf.next(indices), [1, 1, 11, 11])
|
|
|
|
|
|
def test_multibuf_stack():
|
|
size = 5
|
|
bufsize = 9
|
|
stack_num = 4
|
|
cached_num = 3
|
|
env = MyTestEnv(size)
|
|
# test if CachedReplayBuffer can handle stack_num + ignore_obs_next
|
|
buf4 = CachedReplayBuffer(
|
|
ReplayBuffer(bufsize, stack_num=stack_num, ignore_obs_next=True),
|
|
cached_num, size)
|
|
# test if CachedReplayBuffer can handle corner case:
|
|
# buffer + stack_num + ignore_obs_next + sample_avail
|
|
buf5 = CachedReplayBuffer(
|
|
ReplayBuffer(bufsize, stack_num=stack_num,
|
|
ignore_obs_next=True, sample_avail=True),
|
|
cached_num, size)
|
|
obs = env.reset(1)
|
|
for i in range(18):
|
|
obs_next, rew, done, info = env.step(1)
|
|
obs_list = np.array([obs + size * i for i in range(cached_num)])
|
|
act_list = [1] * cached_num
|
|
rew_list = [rew] * cached_num
|
|
done_list = [done] * cached_num
|
|
obs_next_list = -obs_list
|
|
info_list = [info] * cached_num
|
|
batch = Batch(obs=obs_list, act=act_list, rew=rew_list,
|
|
done=done_list, obs_next=obs_next_list, info=info_list)
|
|
buf5.add(batch)
|
|
buf4.add(batch)
|
|
assert np.all(buf4.obs == buf5.obs)
|
|
assert np.all(buf4.done == buf5.done)
|
|
obs = obs_next
|
|
if done:
|
|
obs = env.reset(1)
|
|
# check the `add` order is correct
|
|
assert np.allclose(buf4.obs.reshape(-1), [
|
|
12, 13, 14, 4, 6, 7, 8, 9, 11, # main_buffer
|
|
1, 2, 3, 4, 0, # cached_buffer[0]
|
|
6, 7, 8, 9, 0, # cached_buffer[1]
|
|
11, 12, 13, 14, 0, # cached_buffer[2]
|
|
]), buf4.obs
|
|
assert np.allclose(buf4.done, [
|
|
0, 0, 1, 1, 0, 0, 0, 1, 0, # main_buffer
|
|
0, 0, 0, 1, 0, # cached_buffer[0]
|
|
0, 0, 0, 1, 0, # cached_buffer[1]
|
|
0, 0, 0, 1, 0, # cached_buffer[2]
|
|
]), buf4.done
|
|
assert np.allclose(buf4.unfinished_index(), [10, 15, 20])
|
|
indices = sorted(buf4.sample_indices(0))
|
|
assert np.allclose(indices, list(range(bufsize)) + [9, 10, 14, 15, 19, 20])
|
|
assert np.allclose(buf4[indices].obs[..., 0], [
|
|
[11, 11, 11, 12], [11, 11, 12, 13], [11, 12, 13, 14],
|
|
[4, 4, 4, 4], [6, 6, 6, 6], [6, 6, 6, 7],
|
|
[6, 6, 7, 8], [6, 7, 8, 9], [11, 11, 11, 11],
|
|
[1, 1, 1, 1], [1, 1, 1, 2], [6, 6, 6, 6],
|
|
[6, 6, 6, 7], [11, 11, 11, 11], [11, 11, 11, 12],
|
|
])
|
|
assert np.allclose(buf4[indices].obs_next[..., 0], [
|
|
[11, 11, 12, 13], [11, 12, 13, 14], [11, 12, 13, 14],
|
|
[4, 4, 4, 4], [6, 6, 6, 7], [6, 6, 7, 8],
|
|
[6, 7, 8, 9], [6, 7, 8, 9], [11, 11, 11, 12],
|
|
[1, 1, 1, 2], [1, 1, 1, 2], [6, 6, 6, 7],
|
|
[6, 6, 6, 7], [11, 11, 11, 12], [11, 11, 11, 12],
|
|
])
|
|
indices = buf5.sample_indices(0)
|
|
assert np.allclose(sorted(indices), [2, 7])
|
|
assert np.all(np.isin(buf5.sample_indices(100), indices))
|
|
# manually change the stack num
|
|
buf5.stack_num = 2
|
|
for buf in buf5.buffers:
|
|
buf.stack_num = 2
|
|
indices = buf5.sample_indices(0)
|
|
assert np.allclose(sorted(indices), [0, 1, 2, 5, 6, 7, 10, 15, 20])
|
|
batch, _ = buf5.sample(0)
|
|
# test Atari with CachedReplayBuffer, save_only_last_obs + ignore_obs_next
|
|
buf6 = CachedReplayBuffer(
|
|
ReplayBuffer(bufsize, stack_num=stack_num,
|
|
save_only_last_obs=True, ignore_obs_next=True),
|
|
cached_num, size)
|
|
obs = np.random.rand(size, 4, 84, 84)
|
|
buf6.add(Batch(obs=[obs[2], obs[0]], act=[1, 1], rew=[0, 0], done=[0, 1],
|
|
obs_next=[obs[3], obs[1]]), buffer_ids=[1, 2])
|
|
assert buf6.obs.shape == (buf6.maxsize, 84, 84)
|
|
assert np.allclose(buf6.obs[0], obs[0, -1])
|
|
assert np.allclose(buf6.obs[14], obs[2, -1])
|
|
assert np.allclose(buf6.obs[19], obs[0, -1])
|
|
assert buf6[0].obs.shape == (4, 84, 84)
|
|
|
|
|
|
def test_multibuf_hdf5():
|
|
size = 100
|
|
buffers = {
|
|
"vector": VectorReplayBuffer(size * 4, 4),
|
|
"cached": CachedReplayBuffer(ReplayBuffer(size), 4, size)
|
|
}
|
|
buffer_types = {k: b.__class__ for k, b in buffers.items()}
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
info_t = torch.tensor([1.]).to(device)
|
|
for i in range(4):
|
|
kwargs = {
|
|
'obs': Batch(index=np.array([i])),
|
|
'act': i,
|
|
'rew': np.array([1, 2]),
|
|
'done': i % 3 == 2,
|
|
'info': {"number": {"n": i, "t": info_t}, 'extra': None},
|
|
}
|
|
buffers["vector"].add(Batch.stack([kwargs, kwargs, kwargs]),
|
|
buffer_ids=[0, 1, 2])
|
|
buffers["cached"].add(Batch.stack([kwargs, kwargs, kwargs]),
|
|
buffer_ids=[0, 1, 2])
|
|
|
|
# save
|
|
paths = {}
|
|
for k, buf in buffers.items():
|
|
f, path = tempfile.mkstemp(suffix='.hdf5')
|
|
os.close(f)
|
|
buf.save_hdf5(path)
|
|
paths[k] = path
|
|
|
|
# load replay buffer
|
|
_buffers = {k: buffer_types[k].load_hdf5(paths[k]) for k in paths.keys()}
|
|
|
|
# compare
|
|
for k in buffers.keys():
|
|
assert len(_buffers[k]) == len(buffers[k])
|
|
assert np.allclose(_buffers[k].act, buffers[k].act)
|
|
assert _buffers[k].stack_num == buffers[k].stack_num
|
|
assert _buffers[k].maxsize == buffers[k].maxsize
|
|
assert np.all(_buffers[k]._indices == buffers[k]._indices)
|
|
# check shallow copy in VectorReplayBuffer
|
|
for k in ["vector", "cached"]:
|
|
buffers[k].info.number.n[0] = -100
|
|
assert buffers[k].buffers[0].info.number.n[0] == -100
|
|
# check if still behave normally
|
|
for k in ["vector", "cached"]:
|
|
kwargs = {
|
|
'obs': Batch(index=np.array([5])),
|
|
'act': 5,
|
|
'rew': np.array([2, 1]),
|
|
'done': False,
|
|
'info': {"number": {"n": i}, 'Timelimit.truncate': True},
|
|
}
|
|
buffers[k].add(Batch.stack([kwargs, kwargs, kwargs, kwargs]))
|
|
act = np.zeros(buffers[k].maxsize)
|
|
if k == "vector":
|
|
act[np.arange(5)] = np.array([0, 1, 2, 3, 5])
|
|
act[np.arange(5) + size] = np.array([0, 1, 2, 3, 5])
|
|
act[np.arange(5) + size * 2] = np.array([0, 1, 2, 3, 5])
|
|
act[size * 3] = 5
|
|
elif k == "cached":
|
|
act[np.arange(9)] = np.array([0, 1, 2, 0, 1, 2, 0, 1, 2])
|
|
act[np.arange(3) + size] = np.array([3, 5, 2])
|
|
act[np.arange(3) + size * 2] = np.array([3, 5, 2])
|
|
act[np.arange(3) + size * 3] = np.array([3, 5, 2])
|
|
act[size * 4] = 5
|
|
assert np.allclose(buffers[k].act, act)
|
|
info_keys = ["number", "extra", "Timelimit.truncate"]
|
|
assert set(buffers[k].info.keys()) == set(info_keys)
|
|
|
|
for path in paths.values():
|
|
os.remove(path)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_replaybuffer()
|
|
test_ignore_obs_next()
|
|
test_stack()
|
|
test_segtree()
|
|
test_priortized_replaybuffer()
|
|
test_update()
|
|
test_pickle()
|
|
test_hdf5()
|
|
test_replaybuffermanager()
|
|
test_cachedbuffer()
|
|
test_multibuf_stack()
|
|
test_multibuf_hdf5()
|