Closes #914 Additional changes: - Deprecate python below 11 - Remove 3rd party and throughput tests. This simplifies install and test pipeline - Remove gym compatibility and shimmy - Format with 3.11 conventions. In particular, add `zip(..., strict=True/False)` where possible Since the additional tests and gym were complicating the CI pipeline (flaky and dist-dependent), it didn't make sense to work on fixing the current tests in this PR to then just delete them in the next one. So this PR changes the build and removes these tests at the same time.
424 lines
15 KiB
Python
424 lines
15 KiB
Python
import sys
|
|
import time
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import pytest
|
|
from gymnasium.spaces.discrete import Discrete
|
|
|
|
from tianshou.data import Batch
|
|
from tianshou.env import (
|
|
ContinuousToDiscrete,
|
|
DummyVectorEnv,
|
|
MultiDiscreteToDiscrete,
|
|
RayVectorEnv,
|
|
ShmemVectorEnv,
|
|
SubprocVectorEnv,
|
|
VectorEnvNormObs,
|
|
)
|
|
from tianshou.env.gym_wrappers import TruncatedAsTerminated
|
|
from tianshou.utils import RunningMeanStd
|
|
|
|
if __name__ == "__main__":
|
|
from env import MyTestEnv, NXEnv
|
|
else: # pytest
|
|
from test.base.env import MyTestEnv, NXEnv
|
|
|
|
try:
|
|
import envpool
|
|
except ImportError:
|
|
envpool = None
|
|
|
|
|
|
def has_ray():
|
|
try:
|
|
import ray # noqa: F401
|
|
|
|
return True
|
|
except ImportError:
|
|
return False
|
|
|
|
|
|
def recurse_comp(a, b):
|
|
try:
|
|
if isinstance(a, np.ndarray):
|
|
if a.dtype == object:
|
|
return np.array([recurse_comp(m, n) for m, n in zip(a, b, strict=True)]).all()
|
|
return np.allclose(a, b)
|
|
if isinstance(a, list | tuple):
|
|
return np.array([recurse_comp(m, n) for m, n in zip(a, b, strict=True)]).all()
|
|
if isinstance(a, dict):
|
|
return np.array([recurse_comp(a[k], b[k]) for k in a]).all()
|
|
except Exception:
|
|
return False
|
|
|
|
|
|
def test_async_env(size=10000, num=8, sleep=0.1):
|
|
# simplify the test case, just keep stepping
|
|
env_fns = [
|
|
lambda i=i: MyTestEnv(size=i, sleep=sleep, random_sleep=True)
|
|
for i in range(size, size + num)
|
|
]
|
|
test_cls = [SubprocVectorEnv, ShmemVectorEnv]
|
|
if has_ray():
|
|
test_cls += [RayVectorEnv]
|
|
for cls in test_cls:
|
|
v = cls(env_fns, wait_num=num // 2, timeout=1e-3)
|
|
v.seed(None)
|
|
v.reset()
|
|
# for a random variable u ~ U[0, 1], let v = max{u1, u2, ..., un}
|
|
# P(v <= x) = x^n (0 <= x <= 1), pdf of v is nx^{n-1}
|
|
# expectation of v is n / (n + 1)
|
|
# for a synchronous environment, the following actions should take
|
|
# about 7 * sleep * num / (num + 1) seconds
|
|
# for async simulation, the analysis is complicated, but the time cost
|
|
# should be smaller
|
|
action_list = [1] * num + [0] * (num * 2) + [1] * (num * 4)
|
|
current_idx_start = 0
|
|
act = action_list[:num]
|
|
env_ids = list(range(num))
|
|
o = []
|
|
spent_time = time.time()
|
|
while current_idx_start < len(action_list):
|
|
(
|
|
A,
|
|
B,
|
|
C,
|
|
D,
|
|
E,
|
|
) = v.step(action=act, id=env_ids)
|
|
b = Batch({"obs": A, "rew": B, "terminate": C, "truncated": D, "info": E})
|
|
env_ids = b.info.env_id
|
|
o.append(b)
|
|
current_idx_start += len(act)
|
|
# len of action may be smaller than len(A) in the end
|
|
act = action_list[current_idx_start : current_idx_start + len(A)]
|
|
# truncate env_ids with the first terms
|
|
# typically len(env_ids) == len(A) == len(action), except for the
|
|
# last batch when actions are not enough
|
|
env_ids = env_ids[: len(act)]
|
|
spent_time = time.time() - spent_time
|
|
Batch.cat(o)
|
|
v.close()
|
|
# assure 1/7 improvement
|
|
if sys.platform == "linux" and cls != RayVectorEnv:
|
|
# macOS/Windows cannot pass this check
|
|
assert spent_time < 6.0 * sleep * num / (num + 1)
|
|
|
|
|
|
def test_async_check_id(size=100, num=4, sleep=0.2, timeout=0.7):
|
|
env_fns = [
|
|
lambda: MyTestEnv(size=size, sleep=sleep * 2),
|
|
lambda: MyTestEnv(size=size, sleep=sleep * 3),
|
|
lambda: MyTestEnv(size=size, sleep=sleep * 5),
|
|
lambda: MyTestEnv(size=size, sleep=sleep * 7),
|
|
]
|
|
test_cls = [SubprocVectorEnv, ShmemVectorEnv]
|
|
if has_ray():
|
|
test_cls += [RayVectorEnv]
|
|
total_pass = 0
|
|
for cls in test_cls:
|
|
pass_check = 1
|
|
v = cls(env_fns, wait_num=num - 1, timeout=timeout)
|
|
t = time.time()
|
|
v.reset()
|
|
t = time.time() - t
|
|
print(f"{cls} reset {t}")
|
|
if t > sleep * 9: # huge than maximum sleep time (7 sleep)
|
|
pass_check = 0
|
|
expect_result = [
|
|
[0, 1],
|
|
[0, 1, 2],
|
|
[0, 1, 3],
|
|
[0, 1, 2],
|
|
[0, 1],
|
|
[0, 2, 3],
|
|
[0, 1],
|
|
]
|
|
ids = np.arange(num)
|
|
for res in expect_result:
|
|
t = time.time()
|
|
_, _, _, _, info = v.step([1] * len(ids), ids)
|
|
t = time.time() - t
|
|
ids = Batch(info).env_id
|
|
print(ids, t)
|
|
if not (
|
|
len(ids) == len(res)
|
|
and np.allclose(sorted(ids), res)
|
|
and (t < timeout) == (len(res) == num - 1)
|
|
):
|
|
pass_check = 0
|
|
break
|
|
total_pass += pass_check
|
|
if sys.platform == "linux": # Windows/macOS may not pass this check
|
|
assert total_pass >= 2
|
|
|
|
|
|
def test_vecenv(size=10, num=8, sleep=0.001):
|
|
env_fns = [
|
|
lambda i=i: MyTestEnv(size=i, sleep=sleep, recurse_state=True)
|
|
for i in range(size, size + num)
|
|
]
|
|
venv = [
|
|
DummyVectorEnv(env_fns),
|
|
SubprocVectorEnv(env_fns),
|
|
ShmemVectorEnv(env_fns),
|
|
]
|
|
if has_ray() and sys.platform == "linux":
|
|
venv += [RayVectorEnv(env_fns)]
|
|
for v in venv:
|
|
v.seed(0)
|
|
action_list = [1] * 5 + [0] * 10 + [1] * 20
|
|
o = [v.reset()[0] for v in venv]
|
|
for a in action_list:
|
|
o = []
|
|
for v in venv:
|
|
A, B, C, D, E = v.step([a] * num)
|
|
if sum(C + D):
|
|
A, _ = v.reset(np.where(C + D)[0])
|
|
o.append([A, B, C, D, E])
|
|
for index, infos in enumerate(zip(*o, strict=True)):
|
|
if index == 4: # do not check info here
|
|
continue
|
|
for info in infos:
|
|
assert recurse_comp(infos[0], info)
|
|
|
|
if __name__ == "__main__":
|
|
t = [0] * len(venv)
|
|
for i, e in enumerate(venv):
|
|
t[i] = time.time()
|
|
e.reset()
|
|
for a in action_list:
|
|
done = e.step([a] * num)[2]
|
|
if sum(done) > 0:
|
|
e.reset(np.where(done)[0])
|
|
t[i] = time.time() - t[i]
|
|
for i, v in enumerate(venv):
|
|
print(f"{type(v)}: {t[i]:.6f}s")
|
|
|
|
def assert_get(v, expected):
|
|
assert v.get_env_attr("size") == expected
|
|
assert v.get_env_attr("size", id=0) == [expected[0]]
|
|
assert v.get_env_attr("size", id=[0, 1, 2]) == expected[:3]
|
|
|
|
for v in venv:
|
|
assert_get(v, list(range(size, size + num)))
|
|
assert v.env_num == num
|
|
assert v.action_space == [Discrete(2)] * num
|
|
|
|
v.set_env_attr("size", 0)
|
|
assert_get(v, [0] * num)
|
|
|
|
v.set_env_attr("size", 1, 0)
|
|
assert_get(v, [1] + [0] * (num - 1))
|
|
|
|
v.set_env_attr("size", 2, [1, 2, 3])
|
|
assert_get(v, [1] + [2] * 3 + [0] * (num - 4))
|
|
|
|
for v in venv:
|
|
v.close()
|
|
|
|
|
|
def test_attr_unwrapped():
|
|
train_envs = DummyVectorEnv([lambda: gym.make("CartPole-v1")])
|
|
train_envs.set_env_attr("test_attribute", 1337)
|
|
assert train_envs.get_env_attr("test_attribute") == [1337]
|
|
assert hasattr(train_envs.workers[0].env, "test_attribute")
|
|
assert hasattr(train_envs.workers[0].env.unwrapped, "test_attribute")
|
|
|
|
|
|
def test_env_obs_dtype():
|
|
for obs_type in ["array", "object"]:
|
|
envs = SubprocVectorEnv([lambda i=x, t=obs_type: NXEnv(i, t) for x in [5, 10, 15, 20]])
|
|
obs, info = envs.reset()
|
|
assert obs.dtype == object
|
|
obs = envs.step([1, 1, 1, 1])[0]
|
|
assert obs.dtype == object
|
|
|
|
|
|
def test_env_reset_optional_kwargs(size=10000, num=8):
|
|
env_fns = [lambda i=i: MyTestEnv(size=i) for i in range(size, size + num)]
|
|
test_cls = [DummyVectorEnv, SubprocVectorEnv, ShmemVectorEnv]
|
|
if has_ray():
|
|
test_cls += [RayVectorEnv]
|
|
for cls in test_cls:
|
|
v = cls(env_fns, wait_num=num // 2, timeout=1e-3)
|
|
_, info = v.reset(seed=1)
|
|
assert len(info) == len(env_fns)
|
|
assert isinstance(info[0], dict)
|
|
|
|
|
|
def test_venv_wrapper_gym(num_envs: int = 4):
|
|
# Issue 697
|
|
envs = DummyVectorEnv([lambda: gym.make("CartPole-v1") for _ in range(num_envs)])
|
|
envs = VectorEnvNormObs(envs)
|
|
try:
|
|
obs, info = envs.reset()
|
|
except ValueError:
|
|
obs, info = envs.reset(return_info=True)
|
|
assert isinstance(obs, np.ndarray)
|
|
assert isinstance(info, list)
|
|
assert isinstance(info[0], dict)
|
|
assert obs.shape[0] == len(info) == num_envs
|
|
|
|
|
|
def run_align_norm_obs(raw_env, train_env, test_env, action_list):
|
|
def reset_result_to_obs(reset_result):
|
|
"""Extract observation from reset result (result is possibly a tuple containing info)."""
|
|
if isinstance(reset_result, tuple) and len(reset_result) == 2:
|
|
obs, _ = reset_result
|
|
else:
|
|
obs = reset_result
|
|
return obs
|
|
|
|
eps = np.finfo(np.float32).eps.item()
|
|
raw_reset_result = raw_env.reset()
|
|
train_reset_result = train_env.reset()
|
|
initial_raw_obs = reset_result_to_obs(raw_reset_result)
|
|
initial_train_obs = reset_result_to_obs(train_reset_result)
|
|
raw_obs, train_obs = [initial_raw_obs], [initial_train_obs]
|
|
for action in action_list:
|
|
step_result = raw_env.step(action)
|
|
if len(step_result) == 5:
|
|
obs, rew, terminated, truncated, info = step_result
|
|
done = np.logical_or(terminated, truncated)
|
|
else:
|
|
obs, rew, done, info = step_result
|
|
raw_obs.append(obs)
|
|
if np.any(done):
|
|
reset_result = raw_env.reset(np.where(done)[0])
|
|
obs = reset_result_to_obs(reset_result)
|
|
raw_obs.append(obs)
|
|
step_result = train_env.step(action)
|
|
if len(step_result) == 5:
|
|
obs, rew, terminated, truncated, info = step_result
|
|
done = np.logical_or(terminated, truncated)
|
|
else:
|
|
obs, rew, done, info = step_result
|
|
train_obs.append(obs)
|
|
if np.any(done):
|
|
reset_result = train_env.reset(np.where(done)[0])
|
|
obs = reset_result_to_obs(reset_result)
|
|
train_obs.append(obs)
|
|
ref_rms = RunningMeanStd()
|
|
for ro, to in zip(raw_obs, train_obs, strict=True):
|
|
ref_rms.update(ro)
|
|
no = (ro - ref_rms.mean) / np.sqrt(ref_rms.var + eps)
|
|
assert np.allclose(no, to)
|
|
assert np.allclose(ref_rms.mean, train_env.get_obs_rms().mean)
|
|
assert np.allclose(ref_rms.var, train_env.get_obs_rms().var)
|
|
assert np.allclose(ref_rms.mean, test_env.get_obs_rms().mean)
|
|
assert np.allclose(ref_rms.var, test_env.get_obs_rms().var)
|
|
reset_result = test_env.reset()
|
|
obs = reset_result_to_obs(reset_result)
|
|
test_obs = [obs]
|
|
for action in action_list:
|
|
step_result = test_env.step(action)
|
|
if len(step_result) == 5:
|
|
obs, rew, terminated, truncated, info = step_result
|
|
done = np.logical_or(terminated, truncated)
|
|
else:
|
|
obs, rew, done, info = step_result
|
|
test_obs.append(obs)
|
|
if np.any(done):
|
|
reset_result = test_env.reset(np.where(done)[0])
|
|
obs = reset_result_to_obs(reset_result)
|
|
test_obs.append(obs)
|
|
for ro, to in zip(raw_obs, test_obs, strict=True):
|
|
no = (ro - ref_rms.mean) / np.sqrt(ref_rms.var + eps)
|
|
assert np.allclose(no, to)
|
|
|
|
|
|
def test_venv_norm_obs():
|
|
sizes = np.array([5, 10, 15, 20])
|
|
action = np.array([1, 1, 1, 1])
|
|
total_step = 30
|
|
action_list = [action] * total_step
|
|
env_fns = [lambda i=x: MyTestEnv(size=i, array_state=True) for x in sizes]
|
|
raw = DummyVectorEnv(env_fns)
|
|
train_env = VectorEnvNormObs(DummyVectorEnv(env_fns))
|
|
print(train_env.observation_space)
|
|
test_env = VectorEnvNormObs(DummyVectorEnv(env_fns), update_obs_rms=False)
|
|
test_env.set_obs_rms(train_env.get_obs_rms())
|
|
run_align_norm_obs(raw, train_env, test_env, action_list)
|
|
|
|
|
|
def test_gym_wrappers():
|
|
class DummyEnv(gym.Env):
|
|
def __init__(self):
|
|
self.action_space = gym.spaces.Box(low=-1.0, high=2.0, shape=(4,), dtype=np.float32)
|
|
self.observation_space = gym.spaces.Discrete(2)
|
|
|
|
def step(self, act):
|
|
return self.observation_space.sample(), -1, False, True, {}
|
|
|
|
bsz = 10
|
|
action_per_branch = [4, 6, 10, 7]
|
|
env = DummyEnv()
|
|
original_act = env.action_space.high
|
|
# convert continous to multidiscrete action space
|
|
# with different action number per dimension
|
|
env_m = ContinuousToDiscrete(env, action_per_branch)
|
|
# check conversion is working properly for one action
|
|
np.testing.assert_allclose(env_m.action(env_m.action_space.nvec - 1), original_act)
|
|
# check conversion is working properly for a batch of actions
|
|
np.testing.assert_allclose(
|
|
env_m.action(np.array([env_m.action_space.nvec - 1] * bsz)),
|
|
np.array([original_act] * bsz),
|
|
)
|
|
# convert multidiscrete with different action number per
|
|
# dimension to discrete action space
|
|
env_d = MultiDiscreteToDiscrete(env_m)
|
|
# check conversion is working properly for one action
|
|
np.testing.assert_allclose(env_d.action(env_d.action_space.n - 1), env_m.action_space.nvec - 1)
|
|
# check conversion is working properly for a batch of actions
|
|
np.testing.assert_allclose(
|
|
env_d.action(np.array([env_d.action_space.n - 1] * bsz)),
|
|
np.array([env_m.action_space.nvec - 1] * bsz),
|
|
)
|
|
# check truncate is True when terminated
|
|
try:
|
|
env_t = TruncatedAsTerminated(env)
|
|
except OSError:
|
|
env_t = None
|
|
if env_t is not None:
|
|
_, _, truncated, _, _ = env_t.step(env_t.action_space.sample())
|
|
assert truncated
|
|
|
|
|
|
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
|
|
def test_venv_wrapper_envpool():
|
|
raw = envpool.make_gymnasium("Ant-v3", num_envs=4)
|
|
train = VectorEnvNormObs(envpool.make_gymnasium("Ant-v3", num_envs=4))
|
|
test = VectorEnvNormObs(envpool.make_gymnasium("Ant-v3", num_envs=4), update_obs_rms=False)
|
|
test.set_obs_rms(train.get_obs_rms())
|
|
actions = [np.array([raw.action_space.sample() for _ in range(4)]) for i in range(30)]
|
|
run_align_norm_obs(raw, train, test, actions)
|
|
|
|
|
|
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
|
|
def test_venv_wrapper_envpool_gym_reset_return_info():
|
|
num_envs = 4
|
|
env = VectorEnvNormObs(
|
|
envpool.make_gymnasium("Ant-v3", num_envs=num_envs, gym_reset_return_info=True),
|
|
)
|
|
obs, info = env.reset()
|
|
assert obs.shape[0] == num_envs
|
|
for _, v in info.items():
|
|
if not isinstance(v, dict):
|
|
assert v.shape[0] == num_envs
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_venv_norm_obs()
|
|
test_venv_wrapper_gym()
|
|
test_venv_wrapper_envpool()
|
|
test_venv_wrapper_envpool_gym_reset_return_info()
|
|
test_env_obs_dtype()
|
|
test_vecenv()
|
|
test_attr_unwrapped()
|
|
test_async_env()
|
|
test_async_check_id()
|
|
test_env_reset_optional_kwargs()
|
|
test_gym_wrappers()
|