Closes #914 Additional changes: - Deprecate python below 11 - Remove 3rd party and throughput tests. This simplifies install and test pipeline - Remove gym compatibility and shimmy - Format with 3.11 conventions. In particular, add `zip(..., strict=True/False)` where possible Since the additional tests and gym were complicating the CI pipeline (flaky and dist-dependent), it didn't make sense to work on fixing the current tests in this PR to then just delete them in the next one. So this PR changes the build and removes these tests at the same time.
191 lines
7.1 KiB
Python
191 lines
7.1 KiB
Python
import argparse
|
|
import os
|
|
import pprint
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from gymnasium.spaces import Box
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.policy import A2CPolicy, ImitationPolicy
|
|
from tianshou.trainer import OffpolicyTrainer, OnpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import ActorCritic, Net
|
|
from tianshou.utils.net.discrete import Actor, Critic
|
|
|
|
try:
|
|
import envpool
|
|
except ImportError:
|
|
envpool = None
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--task", type=str, default="CartPole-v0")
|
|
parser.add_argument("--reward-threshold", type=float, default=None)
|
|
parser.add_argument("--seed", type=int, default=1)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--lr", type=float, default=1e-3)
|
|
parser.add_argument("--il-lr", type=float, default=1e-3)
|
|
parser.add_argument("--gamma", type=float, default=0.9)
|
|
parser.add_argument("--epoch", type=int, default=10)
|
|
parser.add_argument("--step-per-epoch", type=int, default=50000)
|
|
parser.add_argument("--il-step-per-epoch", type=int, default=1000)
|
|
parser.add_argument("--episode-per-collect", type=int, default=16)
|
|
parser.add_argument("--step-per-collect", type=int, default=16)
|
|
parser.add_argument("--update-per-step", type=float, default=1 / 16)
|
|
parser.add_argument("--repeat-per-collect", type=int, default=1)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64])
|
|
parser.add_argument("--imitation-hidden-sizes", type=int, nargs="*", default=[128])
|
|
parser.add_argument("--training-num", type=int, default=16)
|
|
parser.add_argument("--test-num", type=int, default=100)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.0)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
# a2c special
|
|
parser.add_argument("--vf-coef", type=float, default=0.5)
|
|
parser.add_argument("--ent-coef", type=float, default=0.0)
|
|
parser.add_argument("--max-grad-norm", type=float, default=None)
|
|
parser.add_argument("--gae-lambda", type=float, default=1.0)
|
|
parser.add_argument("--rew-norm", action="store_true", default=False)
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
@pytest.mark.skipif(envpool is None, reason="EnvPool doesn't support this platform")
|
|
def test_a2c_with_il(args=get_args()):
|
|
# if you want to use python vector env, please refer to other test scripts
|
|
train_envs = env = envpool.make(
|
|
args.task,
|
|
env_type="gymnasium",
|
|
num_envs=args.training_num,
|
|
seed=args.seed,
|
|
)
|
|
test_envs = envpool.make(
|
|
args.task,
|
|
env_type="gymnasium",
|
|
num_envs=args.test_num,
|
|
seed=args.seed,
|
|
)
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
if args.reward_threshold is None:
|
|
default_reward_threshold = {"CartPole-v0": 195}
|
|
args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold)
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
# model
|
|
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
actor = Actor(net, args.action_shape, device=args.device).to(args.device)
|
|
critic = Critic(net, device=args.device).to(args.device)
|
|
optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
|
|
dist = torch.distributions.Categorical
|
|
policy = A2CPolicy(
|
|
actor,
|
|
critic,
|
|
optim,
|
|
dist,
|
|
action_scaling=isinstance(env.action_space, Box),
|
|
discount_factor=args.gamma,
|
|
gae_lambda=args.gae_lambda,
|
|
vf_coef=args.vf_coef,
|
|
ent_coef=args.ent_coef,
|
|
max_grad_norm=args.max_grad_norm,
|
|
reward_normalization=args.rew_norm,
|
|
action_space=env.action_space,
|
|
)
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
)
|
|
test_collector = Collector(policy, test_envs)
|
|
# log
|
|
log_path = os.path.join(args.logdir, args.task, "a2c")
|
|
writer = SummaryWriter(log_path)
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy):
|
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
|
|
|
def stop_fn(mean_rewards):
|
|
return mean_rewards >= args.reward_threshold
|
|
|
|
# trainer
|
|
result = OnpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
repeat_per_collect=args.repeat_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
episode_per_collect=args.episode_per_collect,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
assert stop_fn(result["best_reward"])
|
|
|
|
if __name__ == "__main__":
|
|
pprint.pprint(result)
|
|
# Let's watch its performance!
|
|
env = gym.make(args.task)
|
|
policy.eval()
|
|
collector = Collector(policy, env)
|
|
result = collector.collect(n_episode=1, render=args.render)
|
|
rews, lens = result["rews"], result["lens"]
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
|
|
|
policy.eval()
|
|
# here we define an imitation collector with a trivial policy
|
|
# if args.task == 'CartPole-v0':
|
|
# env.spec.reward_threshold = 190 # lower the goal
|
|
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
|
|
net = Actor(net, args.action_shape, device=args.device).to(args.device)
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
|
|
il_policy = ImitationPolicy(net, optim, action_space=env.action_space)
|
|
il_test_collector = Collector(
|
|
il_policy,
|
|
envpool.make(args.task, env_type="gymnasium", num_envs=args.test_num, seed=args.seed),
|
|
)
|
|
train_collector.reset()
|
|
result = OffpolicyTrainer(
|
|
policy=il_policy,
|
|
train_collector=train_collector,
|
|
test_collector=il_test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.il_step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
logger=logger,
|
|
).run()
|
|
assert stop_fn(result["best_reward"])
|
|
|
|
if __name__ == "__main__":
|
|
pprint.pprint(result)
|
|
# Let's watch its performance!
|
|
env = gym.make(args.task)
|
|
il_policy.eval()
|
|
collector = Collector(il_policy, env)
|
|
result = collector.collect(n_episode=1, render=args.render)
|
|
rews, lens = result["rews"], result["lens"]
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_a2c_with_il()
|