Closes #914 Additional changes: - Deprecate python below 11 - Remove 3rd party and throughput tests. This simplifies install and test pipeline - Remove gym compatibility and shimmy - Format with 3.11 conventions. In particular, add `zip(..., strict=True/False)` where possible Since the additional tests and gym were complicating the CI pipeline (flaky and dist-dependent), it didn't make sense to work on fixing the current tests in this PR to then just delete them in the next one. So this PR changes the build and removes these tests at the same time.
234 lines
8.1 KiB
Python
234 lines
8.1 KiB
Python
import argparse
|
|
import os
|
|
from copy import deepcopy
|
|
from functools import partial
|
|
|
|
import gymnasium
|
|
import numpy as np
|
|
import torch
|
|
from pettingzoo.classic import tictactoe_v3
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
from tianshou.env import DummyVectorEnv
|
|
from tianshou.env.pettingzoo_env import PettingZooEnv
|
|
from tianshou.policy import BasePolicy, DQNPolicy, MultiAgentPolicyManager, RandomPolicy
|
|
from tianshou.trainer import OffpolicyTrainer
|
|
from tianshou.utils import TensorboardLogger
|
|
from tianshou.utils.net.common import Net
|
|
|
|
|
|
def get_env(render_mode: str | None = None):
|
|
return PettingZooEnv(tictactoe_v3.env(render_mode=render_mode))
|
|
|
|
|
|
def get_parser() -> argparse.ArgumentParser:
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--seed", type=int, default=1626)
|
|
parser.add_argument("--eps-test", type=float, default=0.05)
|
|
parser.add_argument("--eps-train", type=float, default=0.1)
|
|
parser.add_argument("--buffer-size", type=int, default=20000)
|
|
parser.add_argument("--lr", type=float, default=1e-4)
|
|
parser.add_argument(
|
|
"--gamma",
|
|
type=float,
|
|
default=0.9,
|
|
help="a smaller gamma favors earlier win",
|
|
)
|
|
parser.add_argument("--n-step", type=int, default=3)
|
|
parser.add_argument("--target-update-freq", type=int, default=320)
|
|
parser.add_argument("--epoch", type=int, default=50)
|
|
parser.add_argument("--step-per-epoch", type=int, default=1000)
|
|
parser.add_argument("--step-per-collect", type=int, default=10)
|
|
parser.add_argument("--update-per-step", type=float, default=0.1)
|
|
parser.add_argument("--batch-size", type=int, default=64)
|
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128, 128, 128, 128])
|
|
parser.add_argument("--training-num", type=int, default=10)
|
|
parser.add_argument("--test-num", type=int, default=10)
|
|
parser.add_argument("--logdir", type=str, default="log")
|
|
parser.add_argument("--render", type=float, default=0.1)
|
|
parser.add_argument(
|
|
"--win-rate",
|
|
type=float,
|
|
default=0.6,
|
|
help="the expected winning rate: Optimal policy can get 0.7",
|
|
)
|
|
parser.add_argument(
|
|
"--watch",
|
|
default=False,
|
|
action="store_true",
|
|
help="no training, watch the play of pre-trained models",
|
|
)
|
|
parser.add_argument(
|
|
"--agent-id",
|
|
type=int,
|
|
default=2,
|
|
help="the learned agent plays as the agent_id-th player. Choices are 1 and 2.",
|
|
)
|
|
parser.add_argument(
|
|
"--resume-path",
|
|
type=str,
|
|
default="",
|
|
help="the path of agent pth file for resuming from a pre-trained agent",
|
|
)
|
|
parser.add_argument(
|
|
"--opponent-path",
|
|
type=str,
|
|
default="",
|
|
help="the path of opponent agent pth file for resuming from a pre-trained agent",
|
|
)
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default="cuda" if torch.cuda.is_available() else "cpu",
|
|
)
|
|
return parser
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
parser = get_parser()
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
def get_agents(
|
|
args: argparse.Namespace = get_args(),
|
|
agent_learn: BasePolicy | None = None,
|
|
agent_opponent: BasePolicy | None = None,
|
|
optim: torch.optim.Optimizer | None = None,
|
|
) -> tuple[BasePolicy, torch.optim.Optimizer, list]:
|
|
env = get_env()
|
|
observation_space = (
|
|
env.observation_space["observation"]
|
|
if isinstance(env.observation_space, gymnasium.spaces.Dict)
|
|
else env.observation_space
|
|
)
|
|
args.state_shape = observation_space.shape or observation_space.n
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
if agent_learn is None:
|
|
# model
|
|
net = Net(
|
|
args.state_shape,
|
|
args.action_shape,
|
|
hidden_sizes=args.hidden_sizes,
|
|
device=args.device,
|
|
).to(args.device)
|
|
if optim is None:
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
|
|
agent_learn = DQNPolicy(
|
|
net,
|
|
optim,
|
|
args.gamma,
|
|
args.n_step,
|
|
target_update_freq=args.target_update_freq,
|
|
)
|
|
if args.resume_path:
|
|
agent_learn.load_state_dict(torch.load(args.resume_path))
|
|
|
|
if agent_opponent is None:
|
|
if args.opponent_path:
|
|
agent_opponent = deepcopy(agent_learn)
|
|
agent_opponent.load_state_dict(torch.load(args.opponent_path))
|
|
else:
|
|
agent_opponent = RandomPolicy()
|
|
|
|
if args.agent_id == 1:
|
|
agents = [agent_learn, agent_opponent]
|
|
else:
|
|
agents = [agent_opponent, agent_learn]
|
|
policy = MultiAgentPolicyManager(agents, env)
|
|
return policy, optim, env.agents
|
|
|
|
|
|
def train_agent(
|
|
args: argparse.Namespace = get_args(),
|
|
agent_learn: BasePolicy | None = None,
|
|
agent_opponent: BasePolicy | None = None,
|
|
optim: torch.optim.Optimizer | None = None,
|
|
) -> tuple[dict, BasePolicy]:
|
|
train_envs = DummyVectorEnv([get_env for _ in range(args.training_num)])
|
|
test_envs = DummyVectorEnv([get_env for _ in range(args.test_num)])
|
|
# seed
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
train_envs.seed(args.seed)
|
|
test_envs.seed(args.seed)
|
|
|
|
policy, optim, agents = get_agents(
|
|
args,
|
|
agent_learn=agent_learn,
|
|
agent_opponent=agent_opponent,
|
|
optim=optim,
|
|
)
|
|
|
|
# collector
|
|
train_collector = Collector(
|
|
policy,
|
|
train_envs,
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
exploration_noise=True,
|
|
)
|
|
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
|
# policy.set_eps(1)
|
|
train_collector.collect(n_step=args.batch_size * args.training_num)
|
|
# log
|
|
log_path = os.path.join(args.logdir, "tic_tac_toe", "dqn")
|
|
writer = SummaryWriter(log_path)
|
|
writer.add_text("args", str(args))
|
|
logger = TensorboardLogger(writer)
|
|
|
|
def save_best_fn(policy):
|
|
if hasattr(args, "model_save_path"):
|
|
model_save_path = args.model_save_path
|
|
else:
|
|
model_save_path = os.path.join(args.logdir, "tic_tac_toe", "dqn", "policy.pth")
|
|
torch.save(policy.policies[agents[args.agent_id - 1]].state_dict(), model_save_path)
|
|
|
|
def stop_fn(mean_rewards):
|
|
return mean_rewards >= args.win_rate
|
|
|
|
def train_fn(epoch, env_step):
|
|
policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_train)
|
|
|
|
def test_fn(epoch, env_step):
|
|
policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_test)
|
|
|
|
def reward_metric(rews):
|
|
return rews[:, args.agent_id - 1]
|
|
|
|
# trainer
|
|
result = OffpolicyTrainer(
|
|
policy=policy,
|
|
train_collector=train_collector,
|
|
test_collector=test_collector,
|
|
max_epoch=args.epoch,
|
|
step_per_epoch=args.step_per_epoch,
|
|
step_per_collect=args.step_per_collect,
|
|
episode_per_test=args.test_num,
|
|
batch_size=args.batch_size,
|
|
train_fn=train_fn,
|
|
test_fn=test_fn,
|
|
stop_fn=stop_fn,
|
|
save_best_fn=save_best_fn,
|
|
update_per_step=args.update_per_step,
|
|
logger=logger,
|
|
test_in_train=False,
|
|
reward_metric=reward_metric,
|
|
).run()
|
|
|
|
return result, policy.policies[agents[args.agent_id - 1]]
|
|
|
|
|
|
def watch(
|
|
args: argparse.Namespace = get_args(),
|
|
agent_learn: BasePolicy | None = None,
|
|
agent_opponent: BasePolicy | None = None,
|
|
) -> None:
|
|
env = DummyVectorEnv([partial(get_env, render_mode="human")])
|
|
policy, optim, agents = get_agents(args, agent_learn=agent_learn, agent_opponent=agent_opponent)
|
|
policy.eval()
|
|
policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_test)
|
|
collector = Collector(policy, env, exploration_noise=True)
|
|
result = collector.collect(n_episode=1, render=args.render)
|
|
rews, lens = result["rews"], result["lens"]
|
|
print(f"Final reward: {rews[:, args.agent_id - 1].mean()}, length: {lens.mean()}")
|