Closes #914 Additional changes: - Deprecate python below 11 - Remove 3rd party and throughput tests. This simplifies install and test pipeline - Remove gym compatibility and shimmy - Format with 3.11 conventions. In particular, add `zip(..., strict=True/False)` where possible Since the additional tests and gym were complicating the CI pipeline (flaky and dist-dependent), it didn't make sense to work on fixing the current tests in this PR to then just delete them in the next one. So this PR changes the build and removes these tests at the same time.
317 lines
12 KiB
Python
317 lines
12 KiB
Python
from typing import Any
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.nn.utils import clip_grad_norm_
|
|
|
|
from tianshou.data import Batch, ReplayBuffer, to_torch
|
|
from tianshou.data.types import RolloutBatchProtocol
|
|
from tianshou.policy import SACPolicy
|
|
from tianshou.utils.net.continuous import ActorProb
|
|
|
|
|
|
class CQLPolicy(SACPolicy):
|
|
"""Implementation of CQL algorithm. arXiv:2006.04779.
|
|
|
|
:param ActorProb actor: the actor network following the rules in
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> a)
|
|
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
|
|
:param torch.nn.Module critic1: the first critic network. (s, a -> Q(s, a))
|
|
:param torch.optim.Optimizer critic1_optim: the optimizer for the first
|
|
critic network.
|
|
:param torch.nn.Module critic2: the second critic network. (s, a -> Q(s, a))
|
|
:param torch.optim.Optimizer critic2_optim: the optimizer for the second
|
|
critic network.
|
|
:param float cql_alpha_lr: the learning rate of cql_log_alpha. Default to 1e-4.
|
|
:param float cql_weight: the value of alpha. Default to 1.0.
|
|
:param float tau: param for soft update of the target network.
|
|
Default to 0.005.
|
|
:param float gamma: discount factor, in [0, 1]. Default to 0.99.
|
|
:param (float, torch.Tensor, torch.optim.Optimizer) or float alpha: entropy
|
|
regularization coefficient. Default to 0.2.
|
|
If a tuple (target_entropy, log_alpha, alpha_optim) is provided, then
|
|
alpha is automatically tuned.
|
|
:param float temperature: the value of temperature. Default to 1.0.
|
|
:param bool with_lagrange: whether to use Lagrange. Default to True.
|
|
:param float lagrange_threshold: the value of tau in CQL(Lagrange).
|
|
Default to 10.0.
|
|
:param float min_action: The minimum value of each dimension of action.
|
|
Default to -1.0.
|
|
:param float max_action: The maximum value of each dimension of action.
|
|
Default to 1.0.
|
|
:param int num_repeat_actions: The number of times the action is repeated
|
|
when calculating log-sum-exp. Default to 10.
|
|
:param float alpha_min: lower bound for clipping cql_alpha. Default to 0.0.
|
|
:param float alpha_max: upper bound for clipping cql_alpha. Default to 1e6.
|
|
:param float clip_grad: clip_grad for updating critic network. Default to 1.0.
|
|
:param Union[str, torch.device] device: which device to create this model on.
|
|
Default to "cpu".
|
|
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
|
|
optimizer in each policy.update(). Default to None (no lr_scheduler).
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
actor: ActorProb,
|
|
actor_optim: torch.optim.Optimizer,
|
|
critic1: torch.nn.Module,
|
|
critic1_optim: torch.optim.Optimizer,
|
|
critic2: torch.nn.Module,
|
|
critic2_optim: torch.optim.Optimizer,
|
|
cql_alpha_lr: float = 1e-4,
|
|
cql_weight: float = 1.0,
|
|
tau: float = 0.005,
|
|
gamma: float = 0.99,
|
|
alpha: float | tuple[float, torch.Tensor, torch.optim.Optimizer] = 0.2,
|
|
temperature: float = 1.0,
|
|
with_lagrange: bool = True,
|
|
lagrange_threshold: float = 10.0,
|
|
min_action: float = -1.0,
|
|
max_action: float = 1.0,
|
|
num_repeat_actions: int = 10,
|
|
alpha_min: float = 0.0,
|
|
alpha_max: float = 1e6,
|
|
clip_grad: float = 1.0,
|
|
device: str | torch.device = "cpu",
|
|
**kwargs: Any,
|
|
) -> None:
|
|
super().__init__(
|
|
actor,
|
|
actor_optim,
|
|
critic1,
|
|
critic1_optim,
|
|
critic2,
|
|
critic2_optim,
|
|
tau,
|
|
gamma,
|
|
alpha,
|
|
**kwargs,
|
|
)
|
|
# There are _target_entropy, _log_alpha, _alpha_optim in SACPolicy.
|
|
self.device = device
|
|
self.temperature = temperature
|
|
self.with_lagrange = with_lagrange
|
|
self.lagrange_threshold = lagrange_threshold
|
|
|
|
self.cql_weight = cql_weight
|
|
|
|
self.cql_log_alpha = torch.tensor([0.0], requires_grad=True)
|
|
self.cql_alpha_optim = torch.optim.Adam([self.cql_log_alpha], lr=cql_alpha_lr)
|
|
self.cql_log_alpha = self.cql_log_alpha.to(device)
|
|
|
|
self.min_action = min_action
|
|
self.max_action = max_action
|
|
|
|
self.num_repeat_actions = num_repeat_actions
|
|
|
|
self.alpha_min = alpha_min
|
|
self.alpha_max = alpha_max
|
|
self.clip_grad = clip_grad
|
|
|
|
def train(self, mode: bool = True) -> "CQLPolicy":
|
|
"""Set the module in training mode, except for the target network."""
|
|
self.training = mode
|
|
self.actor.train(mode)
|
|
self.critic1.train(mode)
|
|
self.critic2.train(mode)
|
|
return self
|
|
|
|
def sync_weight(self) -> None:
|
|
"""Soft-update the weight for the target network."""
|
|
self.soft_update(self.critic1_old, self.critic1, self.tau)
|
|
self.soft_update(self.critic2_old, self.critic2, self.tau)
|
|
|
|
def actor_pred(self, obs: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
|
batch = Batch(obs=obs, info=None)
|
|
obs_result = self(batch)
|
|
return obs_result.act, obs_result.log_prob
|
|
|
|
def calc_actor_loss(self, obs: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
|
act_pred, log_pi = self.actor_pred(obs)
|
|
q1 = self.critic1(obs, act_pred)
|
|
q2 = self.critic2(obs, act_pred)
|
|
min_Q = torch.min(q1, q2)
|
|
self._alpha: float | torch.Tensor
|
|
actor_loss = (self._alpha * log_pi - min_Q).mean()
|
|
# actor_loss.shape: (), log_pi.shape: (batch_size, 1)
|
|
return actor_loss, log_pi
|
|
|
|
def calc_pi_values(
|
|
self,
|
|
obs_pi: torch.Tensor,
|
|
obs_to_pred: torch.Tensor,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
act_pred, log_pi = self.actor_pred(obs_pi)
|
|
|
|
q1 = self.critic1(obs_to_pred, act_pred)
|
|
q2 = self.critic2(obs_to_pred, act_pred)
|
|
|
|
return q1 - log_pi.detach(), q2 - log_pi.detach()
|
|
|
|
def calc_random_values(
|
|
self,
|
|
obs: torch.Tensor,
|
|
act: torch.Tensor,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
random_value1 = self.critic1(obs, act)
|
|
random_log_prob1 = np.log(0.5 ** act.shape[-1])
|
|
|
|
random_value2 = self.critic2(obs, act)
|
|
random_log_prob2 = np.log(0.5 ** act.shape[-1])
|
|
|
|
return random_value1 - random_log_prob1, random_value2 - random_log_prob2
|
|
|
|
def process_fn(
|
|
self,
|
|
batch: RolloutBatchProtocol,
|
|
buffer: ReplayBuffer,
|
|
indices: np.ndarray,
|
|
) -> RolloutBatchProtocol:
|
|
# TODO: mypy rightly complains here b/c the design violates
|
|
# Liskov Substitution Principle
|
|
# DDPGPolicy.process_fn() results in a batch with returns but
|
|
# CQLPolicy.process_fn() doesn't add the returns.
|
|
# Should probably be fixed!
|
|
return batch
|
|
|
|
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
|
|
batch: Batch = to_torch(batch, dtype=torch.float, device=self.device)
|
|
obs, act, rew, obs_next = batch.obs, batch.act, batch.rew, batch.obs_next
|
|
batch_size = obs.shape[0]
|
|
|
|
# compute actor loss and update actor
|
|
actor_loss, log_pi = self.calc_actor_loss(obs)
|
|
self.actor_optim.zero_grad()
|
|
actor_loss.backward()
|
|
self.actor_optim.step()
|
|
|
|
# compute alpha loss
|
|
if self._is_auto_alpha:
|
|
log_pi = log_pi + self._target_entropy
|
|
alpha_loss = -(self._log_alpha * log_pi.detach()).mean()
|
|
self._alpha_optim.zero_grad()
|
|
# update log_alpha
|
|
alpha_loss.backward()
|
|
self._alpha_optim.step()
|
|
# update alpha
|
|
self._alpha = self._log_alpha.detach().exp()
|
|
|
|
# compute target_Q
|
|
with torch.no_grad():
|
|
act_next, new_log_pi = self.actor_pred(obs_next)
|
|
|
|
target_Q1 = self.critic1_old(obs_next, act_next)
|
|
target_Q2 = self.critic2_old(obs_next, act_next)
|
|
|
|
target_Q = torch.min(target_Q1, target_Q2) - self._alpha * new_log_pi
|
|
|
|
target_Q = rew + self._gamma * (1 - batch.done) * target_Q.flatten()
|
|
# shape: (batch_size)
|
|
|
|
# compute critic loss
|
|
current_Q1 = self.critic1(obs, act).flatten()
|
|
current_Q2 = self.critic2(obs, act).flatten()
|
|
# shape: (batch_size)
|
|
|
|
critic1_loss = F.mse_loss(current_Q1, target_Q)
|
|
critic2_loss = F.mse_loss(current_Q2, target_Q)
|
|
|
|
# CQL
|
|
random_actions = (
|
|
torch.FloatTensor(batch_size * self.num_repeat_actions, act.shape[-1])
|
|
.uniform_(-self.min_action, self.max_action)
|
|
.to(self.device)
|
|
)
|
|
|
|
obs_len = len(obs.shape)
|
|
repeat_size = [1, self.num_repeat_actions] + [1] * (obs_len - 1)
|
|
view_size = [batch_size * self.num_repeat_actions, *list(obs.shape[1:])]
|
|
tmp_obs = obs.unsqueeze(1).repeat(*repeat_size).view(*view_size)
|
|
tmp_obs_next = obs_next.unsqueeze(1).repeat(*repeat_size).view(*view_size)
|
|
# tmp_obs & tmp_obs_next: (batch_size * num_repeat, state_dim)
|
|
|
|
current_pi_value1, current_pi_value2 = self.calc_pi_values(tmp_obs, tmp_obs)
|
|
next_pi_value1, next_pi_value2 = self.calc_pi_values(tmp_obs_next, tmp_obs)
|
|
|
|
random_value1, random_value2 = self.calc_random_values(tmp_obs, random_actions)
|
|
|
|
for value in [
|
|
current_pi_value1,
|
|
current_pi_value2,
|
|
next_pi_value1,
|
|
next_pi_value2,
|
|
random_value1,
|
|
random_value2,
|
|
]:
|
|
value.reshape(batch_size, self.num_repeat_actions, 1)
|
|
|
|
# cat q values
|
|
cat_q1 = torch.cat([random_value1, current_pi_value1, next_pi_value1], 1)
|
|
cat_q2 = torch.cat([random_value2, current_pi_value2, next_pi_value2], 1)
|
|
# shape: (batch_size, 3 * num_repeat, 1)
|
|
|
|
cql1_scaled_loss = (
|
|
torch.logsumexp(cat_q1 / self.temperature, dim=1).mean()
|
|
* self.cql_weight
|
|
* self.temperature
|
|
- current_Q1.mean() * self.cql_weight
|
|
)
|
|
cql2_scaled_loss = (
|
|
torch.logsumexp(cat_q2 / self.temperature, dim=1).mean()
|
|
* self.cql_weight
|
|
* self.temperature
|
|
- current_Q2.mean() * self.cql_weight
|
|
)
|
|
# shape: (1)
|
|
|
|
if self.with_lagrange:
|
|
cql_alpha = torch.clamp(
|
|
self.cql_log_alpha.exp(),
|
|
self.alpha_min,
|
|
self.alpha_max,
|
|
)
|
|
cql1_scaled_loss = cql_alpha * (cql1_scaled_loss - self.lagrange_threshold)
|
|
cql2_scaled_loss = cql_alpha * (cql2_scaled_loss - self.lagrange_threshold)
|
|
|
|
self.cql_alpha_optim.zero_grad()
|
|
cql_alpha_loss = -(cql1_scaled_loss + cql2_scaled_loss) * 0.5
|
|
cql_alpha_loss.backward(retain_graph=True)
|
|
self.cql_alpha_optim.step()
|
|
|
|
critic1_loss = critic1_loss + cql1_scaled_loss
|
|
critic2_loss = critic2_loss + cql2_scaled_loss
|
|
|
|
# update critic
|
|
self.critic1_optim.zero_grad()
|
|
critic1_loss.backward(retain_graph=True)
|
|
# clip grad, prevent the vanishing gradient problem
|
|
# It doesn't seem necessary
|
|
clip_grad_norm_(self.critic1.parameters(), self.clip_grad)
|
|
self.critic1_optim.step()
|
|
|
|
self.critic2_optim.zero_grad()
|
|
critic2_loss.backward()
|
|
clip_grad_norm_(self.critic2.parameters(), self.clip_grad)
|
|
self.critic2_optim.step()
|
|
|
|
self.sync_weight()
|
|
|
|
result = {
|
|
"loss/actor": actor_loss.item(),
|
|
"loss/critic1": critic1_loss.item(),
|
|
"loss/critic2": critic2_loss.item(),
|
|
}
|
|
if self._is_auto_alpha:
|
|
result["loss/alpha"] = alpha_loss.item()
|
|
result["alpha"] = self._alpha.item() # type: ignore
|
|
if self.with_lagrange:
|
|
result["loss/cql_alpha"] = cql_alpha_loss.item()
|
|
result["cql_alpha"] = cql_alpha.item()
|
|
return result
|