Michael Panchenko 2cc34fb72b
Poetry install, remove gym, bump python (#925)
Closes #914 

Additional changes:

- Deprecate python below 11
- Remove 3rd party and throughput tests. This simplifies install and
test pipeline
- Remove gym compatibility and shimmy
- Format with 3.11 conventions. In particular, add `zip(...,
strict=True/False)` where possible

Since the additional tests and gym were complicating the CI pipeline
(flaky and dist-dependent), it didn't make sense to work on fixing the
current tests in this PR to then just delete them in the next one. So
this PR changes the build and removes these tests at the same time.
2023-09-05 14:34:23 -07:00

168 lines
7.6 KiB
Python

from collections.abc import Callable
from typing import Any
import numpy as np
import torch
from torch import nn
from tianshou.data import ReplayBuffer, to_torch_as
from tianshou.data.types import LogpOldProtocol, RolloutBatchProtocol
from tianshou.policy import A2CPolicy
from tianshou.policy.modelfree.pg import TDistParams
from tianshou.utils.net.common import ActorCritic
class PPOPolicy(A2CPolicy):
r"""Implementation of Proximal Policy Optimization. arXiv:1707.06347.
:param torch.nn.Module actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
:param torch.nn.Module critic: the critic network. (s -> V(s))
:param torch.optim.Optimizer optim: the optimizer for actor and critic network.
:param dist_fn: distribution class for computing the action.
:param float discount_factor: in [0, 1]. Default to 0.99.
:param float eps_clip: :math:`\epsilon` in :math:`L_{CLIP}` in the original
paper. Default to 0.2.
:param float dual_clip: a parameter c mentioned in arXiv:1912.09729 Equ. 5,
where c > 1 is a constant indicating the lower bound.
Default to 5.0 (set None if you do not want to use it).
:param bool value_clip: a parameter mentioned in arXiv:1811.02553v3 Sec. 4.1.
Default to True.
:param bool advantage_normalization: whether to do per mini-batch advantage
normalization. Default to True.
:param bool recompute_advantage: whether to recompute advantage every update
repeat according to https://arxiv.org/pdf/2006.05990.pdf Sec. 3.5.
Default to False.
:param float vf_coef: weight for value loss. Default to 0.5.
:param float ent_coef: weight for entropy loss. Default to 0.01.
:param float max_grad_norm: clipping gradients in back propagation. Default to
None.
:param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation.
Default to 0.95.
:param bool reward_normalization: normalize estimated values to have std close
to 1, also normalize the advantage to Normal(0, 1). Default to False.
:param int max_batchsize: the maximum size of the batch when computing GAE,
depends on the size of available memory and the memory cost of the model;
should be as large as possible within the memory constraint. Default to 256.
:param bool action_scaling: whether to map actions from range [-1, 1] to range
[action_spaces.low, action_spaces.high]. Default to True.
:param str action_bound_method: method to bound action to range [-1, 1], can be
either "clip" (for simply clipping the action), "tanh" (for applying tanh
squashing) for now, or empty string for no bounding. Default to "clip".
:param Optional[gym.Space] action_space: env's action space, mandatory if you want
to use option "action_scaling" or "action_bound_method". Default to None.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update(). Default to None (no lr_scheduler).
:param bool deterministic_eval: whether to use deterministic action instead of
stochastic action sampled by the policy. Default to False.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
actor: torch.nn.Module,
critic: torch.nn.Module,
optim: torch.optim.Optimizer,
dist_fn: Callable[[TDistParams], torch.distributions.Distribution],
eps_clip: float = 0.2,
dual_clip: float | None = None,
value_clip: bool = False,
advantage_normalization: bool = True,
recompute_advantage: bool = False,
**kwargs: Any,
) -> None:
super().__init__(actor, critic, optim, dist_fn, **kwargs)
self._eps_clip = eps_clip
assert (
dual_clip is None or dual_clip > 1.0
), "Dual-clip PPO parameter should greater than 1.0."
self._dual_clip = dual_clip
self._value_clip = value_clip
self._norm_adv = advantage_normalization
self._recompute_adv = recompute_advantage
self._actor_critic: ActorCritic
def process_fn(
self,
batch: RolloutBatchProtocol,
buffer: ReplayBuffer,
indices: np.ndarray,
) -> LogpOldProtocol:
if self._recompute_adv:
# buffer input `buffer` and `indices` to be used in `learn()`.
self._buffer, self._indices = buffer, indices
batch = self._compute_returns(batch, buffer, indices)
batch.act = to_torch_as(batch.act, batch.v_s)
with torch.no_grad():
batch.logp_old = self(batch).dist.log_prob(batch.act)
batch: LogpOldProtocol
return batch
# TODO: why does mypy complain?
def learn( # type: ignore
self,
batch: RolloutBatchProtocol,
batch_size: int,
repeat: int,
*args: Any,
**kwargs: Any,
) -> dict[str, list[float]]:
losses, clip_losses, vf_losses, ent_losses = [], [], [], []
for step in range(repeat):
if self._recompute_adv and step > 0:
batch = self._compute_returns(batch, self._buffer, self._indices)
for minibatch in batch.split(batch_size, merge_last=True):
# calculate loss for actor
dist = self(minibatch).dist
if self._norm_adv:
mean, std = minibatch.adv.mean(), minibatch.adv.std()
minibatch.adv = (minibatch.adv - mean) / (std + self._eps) # per-batch norm
ratio = (dist.log_prob(minibatch.act) - minibatch.logp_old).exp().float()
ratio = ratio.reshape(ratio.size(0), -1).transpose(0, 1)
surr1 = ratio * minibatch.adv
surr2 = ratio.clamp(1.0 - self._eps_clip, 1.0 + self._eps_clip) * minibatch.adv
if self._dual_clip:
clip1 = torch.min(surr1, surr2)
clip2 = torch.max(clip1, self._dual_clip * minibatch.adv)
clip_loss = -torch.where(minibatch.adv < 0, clip2, clip1).mean()
else:
clip_loss = -torch.min(surr1, surr2).mean()
# calculate loss for critic
value = self.critic(minibatch.obs).flatten()
if self._value_clip:
v_clip = minibatch.v_s + (value - minibatch.v_s).clamp(
-self._eps_clip,
self._eps_clip,
)
vf1 = (minibatch.returns - value).pow(2)
vf2 = (minibatch.returns - v_clip).pow(2)
vf_loss = torch.max(vf1, vf2).mean()
else:
vf_loss = (minibatch.returns - value).pow(2).mean()
# calculate regularization and overall loss
ent_loss = dist.entropy().mean()
loss = clip_loss + self._weight_vf * vf_loss - self._weight_ent * ent_loss
self.optim.zero_grad()
loss.backward()
if self._grad_norm: # clip large gradient
nn.utils.clip_grad_norm_(
self._actor_critic.parameters(),
max_norm=self._grad_norm,
)
self.optim.step()
clip_losses.append(clip_loss.item())
vf_losses.append(vf_loss.item())
ent_losses.append(ent_loss.item())
losses.append(loss.item())
return {
"loss": losses,
"loss/clip": clip_losses,
"loss/vf": vf_losses,
"loss/ent": ent_losses,
}