Closes #914 Additional changes: - Deprecate python below 11 - Remove 3rd party and throughput tests. This simplifies install and test pipeline - Remove gym compatibility and shimmy - Format with 3.11 conventions. In particular, add `zip(..., strict=True/False)` where possible Since the additional tests and gym were complicating the CI pipeline (flaky and dist-dependent), it didn't make sense to work on fixing the current tests in this PR to then just delete them in the next one. So this PR changes the build and removes these tests at the same time.
139 lines
5.5 KiB
Python
139 lines
5.5 KiB
Python
from copy import deepcopy
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from tianshou.data import ReplayBuffer
|
|
from tianshou.data.types import RolloutBatchProtocol
|
|
from tianshou.exploration import BaseNoise, GaussianNoise
|
|
from tianshou.policy import DDPGPolicy
|
|
|
|
|
|
class TD3Policy(DDPGPolicy):
|
|
"""Implementation of TD3, arXiv:1802.09477.
|
|
|
|
:param torch.nn.Module actor: the actor network following the rules in
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
|
|
:param torch.optim.Optimizer actor_optim: the optimizer for actor network.
|
|
:param torch.nn.Module critic1: the first critic network. (s, a -> Q(s, a))
|
|
:param torch.optim.Optimizer critic1_optim: the optimizer for the first
|
|
critic network.
|
|
:param torch.nn.Module critic2: the second critic network. (s, a -> Q(s, a))
|
|
:param torch.optim.Optimizer critic2_optim: the optimizer for the second
|
|
critic network.
|
|
:param float tau: param for soft update of the target network. Default to 0.005.
|
|
:param float gamma: discount factor, in [0, 1]. Default to 0.99.
|
|
:param float exploration_noise: the exploration noise, add to the action.
|
|
Default to ``GaussianNoise(sigma=0.1)``
|
|
:param float policy_noise: the noise used in updating policy network.
|
|
Default to 0.2.
|
|
:param int update_actor_freq: the update frequency of actor network.
|
|
Default to 2.
|
|
:param float noise_clip: the clipping range used in updating policy network.
|
|
Default to 0.5.
|
|
:param bool reward_normalization: normalize the reward to Normal(0, 1).
|
|
Default to False.
|
|
:param bool action_scaling: whether to map actions from range [-1, 1] to range
|
|
[action_spaces.low, action_spaces.high]. Default to True.
|
|
:param str action_bound_method: method to bound action to range [-1, 1], can be
|
|
either "clip" (for simply clipping the action) or empty string for no bounding.
|
|
Default to "clip".
|
|
:param Optional[gym.Space] action_space: env's action space, mandatory if you want
|
|
to use option "action_scaling" or "action_bound_method". Default to None.
|
|
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
|
|
optimizer in each policy.update(). Default to None (no lr_scheduler).
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
actor: torch.nn.Module,
|
|
actor_optim: torch.optim.Optimizer,
|
|
critic1: torch.nn.Module,
|
|
critic1_optim: torch.optim.Optimizer,
|
|
critic2: torch.nn.Module,
|
|
critic2_optim: torch.optim.Optimizer,
|
|
tau: float = 0.005,
|
|
gamma: float = 0.99,
|
|
exploration_noise: BaseNoise | None = GaussianNoise(sigma=0.1),
|
|
policy_noise: float = 0.2,
|
|
update_actor_freq: int = 2,
|
|
noise_clip: float = 0.5,
|
|
reward_normalization: bool = False,
|
|
estimation_step: int = 1,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
super().__init__(
|
|
actor,
|
|
actor_optim,
|
|
None,
|
|
None,
|
|
tau,
|
|
gamma,
|
|
exploration_noise,
|
|
reward_normalization,
|
|
estimation_step,
|
|
**kwargs,
|
|
)
|
|
self.critic1, self.critic1_old = critic1, deepcopy(critic1)
|
|
self.critic1_old.eval()
|
|
self.critic1_optim = critic1_optim
|
|
self.critic2, self.critic2_old = critic2, deepcopy(critic2)
|
|
self.critic2_old.eval()
|
|
self.critic2_optim = critic2_optim
|
|
self._policy_noise = policy_noise
|
|
self._freq = update_actor_freq
|
|
self._noise_clip = noise_clip
|
|
self._cnt = 0
|
|
self._last = 0
|
|
|
|
def train(self, mode: bool = True) -> "TD3Policy":
|
|
self.training = mode
|
|
self.actor.train(mode)
|
|
self.critic1.train(mode)
|
|
self.critic2.train(mode)
|
|
return self
|
|
|
|
def sync_weight(self) -> None:
|
|
self.soft_update(self.critic1_old, self.critic1, self.tau)
|
|
self.soft_update(self.critic2_old, self.critic2, self.tau)
|
|
self.soft_update(self.actor_old, self.actor, self.tau)
|
|
|
|
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
|
|
batch = buffer[indices] # batch.obs: s_{t+n}
|
|
act_ = self(batch, model="actor_old", input="obs_next").act
|
|
noise = torch.randn(size=act_.shape, device=act_.device) * self._policy_noise
|
|
if self._noise_clip > 0.0:
|
|
noise = noise.clamp(-self._noise_clip, self._noise_clip)
|
|
act_ += noise
|
|
return torch.min(
|
|
self.critic1_old(batch.obs_next, act_),
|
|
self.critic2_old(batch.obs_next, act_),
|
|
)
|
|
|
|
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
|
|
# critic 1&2
|
|
td1, critic1_loss = self._mse_optimizer(batch, self.critic1, self.critic1_optim)
|
|
td2, critic2_loss = self._mse_optimizer(batch, self.critic2, self.critic2_optim)
|
|
batch.weight = (td1 + td2) / 2.0 # prio-buffer
|
|
|
|
# actor
|
|
if self._cnt % self._freq == 0:
|
|
actor_loss = -self.critic1(batch.obs, self(batch, eps=0.0).act).mean()
|
|
self.actor_optim.zero_grad()
|
|
actor_loss.backward()
|
|
self._last = actor_loss.item()
|
|
self.actor_optim.step()
|
|
self.sync_weight()
|
|
self._cnt += 1
|
|
return {
|
|
"loss/actor": self._last,
|
|
"loss/critic1": critic1_loss.item(),
|
|
"loss/critic2": critic2_loss.item(),
|
|
}
|