Closes #914 Additional changes: - Deprecate python below 11 - Remove 3rd party and throughput tests. This simplifies install and test pipeline - Remove gym compatibility and shimmy - Format with 3.11 conventions. In particular, add `zip(..., strict=True/False)` where possible Since the additional tests and gym were complicating the CI pipeline (flaky and dist-dependent), it didn't make sense to work on fixing the current tests in this PR to then just delete them in the next one. So this PR changes the build and removes these tests at the same time.
95 lines
3.5 KiB
Python
95 lines
3.5 KiB
Python
from collections.abc import Callable
|
|
from typing import Any
|
|
|
|
from tensorboard.backend.event_processing import event_accumulator
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from tianshou.utils.logger.base import LOG_DATA_TYPE, BaseLogger
|
|
from tianshou.utils.warning import deprecation
|
|
|
|
|
|
class TensorboardLogger(BaseLogger):
|
|
"""A logger that relies on tensorboard SummaryWriter by default to visualize and log statistics.
|
|
|
|
:param SummaryWriter writer: the writer to log data.
|
|
:param int train_interval: the log interval in log_train_data(). Default to 1000.
|
|
:param int test_interval: the log interval in log_test_data(). Default to 1.
|
|
:param int update_interval: the log interval in log_update_data(). Default to 1000.
|
|
:param int save_interval: the save interval in save_data(). Default to 1 (save at
|
|
the end of each epoch).
|
|
:param bool write_flush: whether to flush tensorboard result after each
|
|
add_scalar operation. Default to True.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
writer: SummaryWriter,
|
|
train_interval: int = 1000,
|
|
test_interval: int = 1,
|
|
update_interval: int = 1000,
|
|
save_interval: int = 1,
|
|
write_flush: bool = True,
|
|
) -> None:
|
|
super().__init__(train_interval, test_interval, update_interval)
|
|
self.save_interval = save_interval
|
|
self.write_flush = write_flush
|
|
self.last_save_step = -1
|
|
self.writer = writer
|
|
|
|
def write(self, step_type: str, step: int, data: LOG_DATA_TYPE) -> None:
|
|
for k, v in data.items():
|
|
self.writer.add_scalar(k, v, global_step=step)
|
|
if self.write_flush: # issue 580
|
|
self.writer.flush() # issue #482
|
|
|
|
def save_data(
|
|
self,
|
|
epoch: int,
|
|
env_step: int,
|
|
gradient_step: int,
|
|
save_checkpoint_fn: Callable[[int, int, int], str] | None = None,
|
|
) -> None:
|
|
if save_checkpoint_fn and epoch - self.last_save_step >= self.save_interval:
|
|
self.last_save_step = epoch
|
|
save_checkpoint_fn(epoch, env_step, gradient_step)
|
|
self.write("save/epoch", epoch, {"save/epoch": epoch})
|
|
self.write("save/env_step", env_step, {"save/env_step": env_step})
|
|
self.write(
|
|
"save/gradient_step",
|
|
gradient_step,
|
|
{"save/gradient_step": gradient_step},
|
|
)
|
|
|
|
def restore_data(self) -> tuple[int, int, int]:
|
|
ea = event_accumulator.EventAccumulator(self.writer.log_dir)
|
|
ea.Reload()
|
|
|
|
try: # epoch / gradient_step
|
|
epoch = ea.scalars.Items("save/epoch")[-1].step
|
|
self.last_save_step = self.last_log_test_step = epoch
|
|
gradient_step = ea.scalars.Items("save/gradient_step")[-1].step
|
|
self.last_log_update_step = gradient_step
|
|
except KeyError:
|
|
epoch, gradient_step = 0, 0
|
|
try: # offline trainer doesn't have env_step
|
|
env_step = ea.scalars.Items("save/env_step")[-1].step
|
|
self.last_log_train_step = env_step
|
|
except KeyError:
|
|
env_step = 0
|
|
|
|
return epoch, env_step, gradient_step
|
|
|
|
|
|
class BasicLogger(TensorboardLogger):
|
|
"""BasicLogger has changed its name to TensorboardLogger in #427.
|
|
|
|
This class is for compatibility.
|
|
"""
|
|
|
|
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
|
deprecation(
|
|
"Class BasicLogger is marked as deprecated and will be removed soon. "
|
|
"Please use TensorboardLogger instead.",
|
|
)
|
|
super().__init__(*args, **kwargs)
|