199 lines
6.7 KiB
Python
199 lines
6.7 KiB
Python
import numpy as np
|
|
import copy
|
|
'''
|
|
Settings of the Reversi game.
|
|
|
|
(1, 1) is considered as the upper left corner of the board,
|
|
(size, 1) is the lower left
|
|
'''
|
|
|
|
|
|
class Reversi:
|
|
def __init__(self, **kwargs):
|
|
self.size = kwargs['size']
|
|
|
|
def _deflatten(self, idx):
|
|
x = idx // self.size + 1
|
|
y = idx % self.size + 1
|
|
return (x, y)
|
|
|
|
def _flatten(self, vertex):
|
|
x, y = vertex
|
|
if (x == 0) and (y == 0):
|
|
return self.size ** 2
|
|
return (x - 1) * self.size + (y - 1)
|
|
|
|
def get_board(self):
|
|
board = np.zeros([self.size, self.size], dtype=np.int32)
|
|
board[self.size / 2 - 1, self.size / 2 - 1] = -1
|
|
board[self.size / 2, self.size / 2] = -1
|
|
board[self.size / 2 - 1, self.size / 2] = 1
|
|
board[self.size / 2, self.size / 2 - 1] = 1
|
|
return board
|
|
|
|
def _find_correct_moves(self, board, color, is_next=False):
|
|
moves = []
|
|
if is_next:
|
|
new_color = 0 - color
|
|
else:
|
|
new_color = color
|
|
for i in range(self.size ** 2):
|
|
x, y = self._deflatten(i)
|
|
valid = self._is_valid(board, x - 1, y - 1, new_color)
|
|
if valid:
|
|
moves.append(i)
|
|
return moves
|
|
|
|
def _one_direction_valid(self, board, x, y, color):
|
|
if (x >= 0) and (x < self.size):
|
|
if (y >= 0) and (y < self.size):
|
|
if board[x, y] == color:
|
|
return True
|
|
return False
|
|
|
|
def _is_valid(self, board, x, y, color):
|
|
if board[x, y]:
|
|
return False
|
|
for x_direction in [-1, 0, 1]:
|
|
for y_direction in [-1, 0, 1]:
|
|
new_x = x
|
|
new_y = y
|
|
flag = 0
|
|
while True:
|
|
new_x += x_direction
|
|
new_y += y_direction
|
|
if self._one_direction_valid(board, new_x, new_y, 0 - color):
|
|
flag = 1
|
|
else:
|
|
break
|
|
if self._one_direction_valid(board, new_x, new_y, color) and flag:
|
|
return True
|
|
return False
|
|
|
|
def simulate_get_mask(self, state, action_set):
|
|
history_boards, color = copy.deepcopy(state)
|
|
board = copy.deepcopy(history_boards[-1])
|
|
valid_moves = self._find_correct_moves(board, color)
|
|
if not len(valid_moves):
|
|
invalid_action_mask = action_set[0:-1]
|
|
else:
|
|
invalid_action_mask = []
|
|
for action in action_set:
|
|
if action not in valid_moves:
|
|
invalid_action_mask.append(action)
|
|
return invalid_action_mask
|
|
|
|
def simulate_step_forward(self, state, action):
|
|
history_boards, color = copy.deepcopy(state)
|
|
board = copy.deepcopy(history_boards[-1])
|
|
if action == self.size ** 2:
|
|
valid_moves = self._find_correct_moves(board, color, is_next=True)
|
|
if not len(valid_moves):
|
|
winner = self._get_winner(board)
|
|
return None, winner * color
|
|
else:
|
|
return [history_boards, 0 - color], 0
|
|
new_board = self._step(board, color, action)
|
|
history_boards.append(new_board)
|
|
return [history_boards, 0 - color], 0
|
|
|
|
def simulate_hashable_conversion(self, state):
|
|
# since go is MDP, we only need the last board for hashing
|
|
return tuple(state[0][-1].flatten().tolist())
|
|
|
|
def _get_winner(self, board):
|
|
black_num, white_num = self._number_of_black_and_white(board)
|
|
black_win = black_num - white_num
|
|
if black_win > 0:
|
|
winner = 1
|
|
elif black_win < 0:
|
|
winner = -1
|
|
else:
|
|
winner = 0
|
|
return winner
|
|
|
|
def _number_of_black_and_white(self, board):
|
|
black_num = 0
|
|
white_num = 0
|
|
board_list = np.reshape(board, self.size ** 2)
|
|
for i in range(len(board_list)):
|
|
if board_list[i] == 1:
|
|
black_num += 1
|
|
elif board_list[i] == -1:
|
|
white_num += 1
|
|
return black_num, white_num
|
|
|
|
def _step(self, board, color, action):
|
|
if action < 0 or action > self.size ** 2 - 1:
|
|
raise ValueError("Action not in the range of [0,63]!")
|
|
if action is None:
|
|
raise ValueError("Action is None!")
|
|
x, y = self._deflatten(action)
|
|
new_board = self._flip(board, x - 1, y - 1, color)
|
|
return new_board
|
|
|
|
def _flip(self, board, x, y, color):
|
|
valid = 0
|
|
board[x, y] = color
|
|
for x_direction in [-1, 0, 1]:
|
|
for y_direction in [-1, 0, 1]:
|
|
new_x = x
|
|
new_y = y
|
|
flag = 0
|
|
while True:
|
|
new_x += x_direction
|
|
new_y += y_direction
|
|
if self._one_direction_valid(board, new_x, new_y, 0 - color):
|
|
flag = 1
|
|
else:
|
|
break
|
|
if self._one_direction_valid(board, new_x, new_y, color) and flag:
|
|
valid = 1
|
|
flip_x = x
|
|
flip_y = y
|
|
while True:
|
|
flip_x += x_direction
|
|
flip_y += y_direction
|
|
if self._one_direction_valid(board, flip_x, flip_y, 0 - color):
|
|
board[flip_x, flip_y] = color
|
|
else:
|
|
break
|
|
if valid:
|
|
return board
|
|
else:
|
|
raise ValueError("Invalid action")
|
|
|
|
def executor_do_move(self, history, latest_boards, board, color, vertex):
|
|
board = np.reshape(board, (self.size, self.size))
|
|
color = color
|
|
action = self._flatten(vertex)
|
|
if action == self.size ** 2:
|
|
valid_moves = self._find_correct_moves(board, color, is_next=True)
|
|
if not len(valid_moves):
|
|
return False
|
|
else:
|
|
return True
|
|
else:
|
|
new_board = self._step(board, color, action)
|
|
history.append(new_board)
|
|
latest_boards.append(new_board)
|
|
return True
|
|
|
|
def executor_get_score(self, board):
|
|
board = board
|
|
winner = self._get_winner(board)
|
|
return winner
|
|
|
|
|
|
if __name__ == "__main__":
|
|
reversi = Reversi()
|
|
# board = reversi.get_board()
|
|
# print(board)
|
|
# state, value = reversi.simulate_step_forward([board, -1], 20)
|
|
# print(state[0])
|
|
# print("board")
|
|
# print(board)
|
|
# r = reversi.executor_get_score(board)
|
|
# print(r)
|
|
|