Add PSRL policy in tianshou/policy/modelbase/psrl.py. Co-authored-by: n+e <trinkle23897@cmu.edu>
221 lines
7.9 KiB
Python
221 lines
7.9 KiB
Python
import torch
|
|
import numpy as np
|
|
from typing import Any, Dict, Union, Optional
|
|
|
|
from tianshou.data import Batch
|
|
from tianshou.policy import BasePolicy
|
|
|
|
|
|
class PSRLModel(object):
|
|
"""Implementation of Posterior Sampling Reinforcement Learning Model.
|
|
|
|
:param np.ndarray trans_count_prior: dirichlet prior (alphas), with shape
|
|
(n_state, n_action, n_state).
|
|
:param np.ndarray rew_mean_prior: means of the normal priors of rewards,
|
|
with shape (n_state, n_action).
|
|
:param np.ndarray rew_std_prior: standard deviations of the normal priors
|
|
of rewards, with shape (n_state, n_action).
|
|
:param float discount_factor: in [0, 1].
|
|
:param float epsilon: for precision control in value iteration.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
trans_count_prior: np.ndarray,
|
|
rew_mean_prior: np.ndarray,
|
|
rew_std_prior: np.ndarray,
|
|
discount_factor: float,
|
|
epsilon: float,
|
|
) -> None:
|
|
self.trans_count = trans_count_prior
|
|
self.n_state, self.n_action = rew_mean_prior.shape
|
|
self.rew_mean = rew_mean_prior
|
|
self.rew_std = rew_std_prior
|
|
self.rew_square_sum = np.zeros_like(rew_mean_prior)
|
|
self.rew_std_prior = rew_std_prior
|
|
self.discount_factor = discount_factor
|
|
self.rew_count = np.full(rew_mean_prior.shape, epsilon) # no weight
|
|
self.eps = epsilon
|
|
self.policy: np.ndarray
|
|
self.value = np.zeros(self.n_state)
|
|
self.updated = False
|
|
self.__eps = np.finfo(np.float32).eps.item()
|
|
|
|
def observe(
|
|
self,
|
|
trans_count: np.ndarray,
|
|
rew_sum: np.ndarray,
|
|
rew_square_sum: np.ndarray,
|
|
rew_count: np.ndarray,
|
|
) -> None:
|
|
"""Add data into memory pool.
|
|
|
|
For rewards, we have a normal prior at first. After we observed a
|
|
reward for a given state-action pair, we use the mean value of our
|
|
observations instead of the prior mean as the posterior mean. The
|
|
standard deviations are in inverse proportion to the number of the
|
|
corresponding observations.
|
|
|
|
:param np.ndarray trans_count: the number of observations, with shape
|
|
(n_state, n_action, n_state).
|
|
:param np.ndarray rew_sum: total rewards, with shape
|
|
(n_state, n_action).
|
|
:param np.ndarray rew_square_sum: total rewards' squares, with shape
|
|
(n_state, n_action).
|
|
:param np.ndarray rew_count: the number of rewards, with shape
|
|
(n_state, n_action).
|
|
"""
|
|
self.updated = False
|
|
self.trans_count += trans_count
|
|
sum_count = self.rew_count + rew_count
|
|
self.rew_mean = (self.rew_mean * self.rew_count + rew_sum) / sum_count
|
|
self.rew_square_sum += rew_square_sum
|
|
raw_std2 = self.rew_square_sum / sum_count - self.rew_mean ** 2
|
|
self.rew_std = np.sqrt(1 / (
|
|
sum_count / (raw_std2 + self.__eps) + 1 / self.rew_std_prior ** 2))
|
|
self.rew_count = sum_count
|
|
|
|
def sample_trans_prob(self) -> np.ndarray:
|
|
sample_prob = torch.distributions.Dirichlet(
|
|
torch.from_numpy(self.trans_count)).sample().numpy()
|
|
return sample_prob
|
|
|
|
def sample_reward(self) -> np.ndarray:
|
|
return np.random.normal(self.rew_mean, self.rew_std)
|
|
|
|
def solve_policy(self) -> None:
|
|
self.updated = True
|
|
self.policy, self.value = self.value_iteration(
|
|
self.sample_trans_prob(),
|
|
self.sample_reward(),
|
|
self.discount_factor,
|
|
self.eps,
|
|
self.value,
|
|
)
|
|
|
|
@staticmethod
|
|
def value_iteration(
|
|
trans_prob: np.ndarray,
|
|
rew: np.ndarray,
|
|
discount_factor: float,
|
|
eps: float,
|
|
value: np.ndarray,
|
|
) -> np.ndarray:
|
|
"""Value iteration solver for MDPs.
|
|
|
|
:param np.ndarray trans_prob: transition probabilities, with shape
|
|
(n_state, n_action, n_state).
|
|
:param np.ndarray rew: rewards, with shape (n_state, n_action).
|
|
:param float eps: for precision control.
|
|
:param float discount_factor: in [0, 1].
|
|
:param np.ndarray value: the initialize value of value array, with
|
|
shape (n_state, ).
|
|
|
|
:return: the optimal policy with shape (n_state, ).
|
|
"""
|
|
Q = rew + discount_factor * trans_prob.dot(value)
|
|
new_value = Q.max(axis=1)
|
|
while not np.allclose(new_value, value, eps):
|
|
value = new_value
|
|
Q = rew + discount_factor * trans_prob.dot(value)
|
|
new_value = Q.max(axis=1)
|
|
# this is to make sure if Q(s, a1) == Q(s, a2) -> choose a1/a2 randomly
|
|
Q += eps * np.random.randn(*Q.shape)
|
|
return Q.argmax(axis=1), new_value
|
|
|
|
def __call__(
|
|
self,
|
|
obs: np.ndarray,
|
|
state: Optional[Any] = None,
|
|
info: Dict[str, Any] = {},
|
|
) -> np.ndarray:
|
|
if not self.updated:
|
|
self.solve_policy()
|
|
return self.policy[obs]
|
|
|
|
|
|
class PSRLPolicy(BasePolicy):
|
|
"""Implementation of Posterior Sampling Reinforcement Learning.
|
|
|
|
Reference: Strens M. A Bayesian framework for reinforcement learning [C]
|
|
//ICML. 2000, 2000: 943-950.
|
|
|
|
:param np.ndarray trans_count_prior: dirichlet prior (alphas), with shape
|
|
(n_state, n_action, n_state).
|
|
:param np.ndarray rew_mean_prior: means of the normal priors of rewards,
|
|
with shape (n_state, n_action).
|
|
:param np.ndarray rew_std_prior: standard deviations of the normal priors
|
|
of rewards, with shape (n_state, n_action).
|
|
:param float discount_factor: in [0, 1].
|
|
:param float epsilon: for precision control in value iteration.
|
|
:param bool add_done_loop: whether to add an extra self-loop for the
|
|
terminal state in MDP, defaults to False.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
trans_count_prior: np.ndarray,
|
|
rew_mean_prior: np.ndarray,
|
|
rew_std_prior: np.ndarray,
|
|
discount_factor: float = 0.99,
|
|
epsilon: float = 0.01,
|
|
add_done_loop: bool = False,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
super().__init__(**kwargs)
|
|
assert (
|
|
0.0 <= discount_factor <= 1.0
|
|
), "discount factor should be in [0, 1]"
|
|
self.model = PSRLModel(
|
|
trans_count_prior, rew_mean_prior, rew_std_prior,
|
|
discount_factor, epsilon)
|
|
self._add_done_loop = add_done_loop
|
|
|
|
def forward(
|
|
self,
|
|
batch: Batch,
|
|
state: Optional[Union[dict, Batch, np.ndarray]] = None,
|
|
**kwargs: Any,
|
|
) -> Batch:
|
|
"""Compute action over the given batch data with PSRL model.
|
|
|
|
:return: A :class:`~tianshou.data.Batch` with "act" key containing
|
|
the action.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :meth:`~tianshou.policy.BasePolicy.forward` for
|
|
more detailed explanation.
|
|
"""
|
|
act = self.model(batch.obs, state=state, info=batch.info)
|
|
return Batch(act=act)
|
|
|
|
def learn(
|
|
self, batch: Batch, *args: Any, **kwargs: Any
|
|
) -> Dict[str, float]:
|
|
n_s, n_a = self.model.n_state, self.model.n_action
|
|
trans_count = np.zeros((n_s, n_a, n_s))
|
|
rew_sum = np.zeros((n_s, n_a))
|
|
rew_square_sum = np.zeros((n_s, n_a))
|
|
rew_count = np.zeros((n_s, n_a))
|
|
for b in batch.split(size=1):
|
|
obs, act, obs_next = b.obs, b.act, b.obs_next
|
|
trans_count[obs, act, obs_next] += 1
|
|
rew_sum[obs, act] += b.rew
|
|
rew_square_sum[obs, act] += b.rew ** 2
|
|
rew_count[obs, act] += 1
|
|
if self._add_done_loop and b.done:
|
|
# special operation for terminal states: add a self-loop
|
|
trans_count[obs_next, :, obs_next] += 1
|
|
rew_count[obs_next, :] += 1
|
|
self.model.observe(trans_count, rew_sum, rew_square_sum, rew_count)
|
|
return {
|
|
"psrl/rew_mean": self.model.rew_mean.mean(),
|
|
"psrl/rew_std": self.model.rew_std.mean(),
|
|
}
|