Michael Panchenko 3a1bc18add
Method to compute actions from observations (#991)
This PR adds a new method for getting actions from an env's observation
and info. This is useful for standard inference and stands in contrast
to batch-based methods that are currently used in training and
evaluation. Without this, users have to do some kind of gymnastics to
actually perform inference with a trained policy. I have also added a
test for the new method.

In future PRs, this method should be included in the examples (in the
the "watch" section).

To add this required improving multiple typing things and, importantly,
_simplifying the signature of `forward` in many policies!_ This is a
**breaking change**, but it will likely affect no users. The `input`
parameter of forward was a rather hacky mechanism, I believe it is good
that it's gone now. It will also help with #948 .

The main functional change is the addition of `compute_action` to
`BasePolicy`.

Other minor changes:
- improvements in typing
- updated PR and Issue templates
- Improved handling of `max_action_num`

Closes #981
2023-11-16 17:27:53 +00:00

389 lines
15 KiB
Python

from typing import Any, Literal, Self, cast
import gymnasium as gym
import numpy as np
import torch
import torch.nn.functional as F
from overrides import override
from torch.nn.utils import clip_grad_norm_
from tianshou.data import Batch, ReplayBuffer, to_torch
from tianshou.data.buffer.base import TBuffer
from tianshou.data.types import RolloutBatchProtocol
from tianshou.exploration import BaseNoise
from tianshou.policy import SACPolicy
from tianshou.policy.base import TLearningRateScheduler
from tianshou.utils.net.continuous import ActorProb
class CQLPolicy(SACPolicy):
"""Implementation of CQL algorithm. arXiv:2006.04779.
:param actor: the actor network following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> a)
:param actor_optim: The optimizer for actor network.
:param critic: The first critic network.
:param critic_optim: The optimizer for the first critic network.
:param action_space: Env's action space.
:param critic2: the second critic network. (s, a -> Q(s, a)).
If None, use the same network as critic (via deepcopy).
:param critic2_optim: the optimizer for the second critic network.
If None, clone critic_optim to use for critic2.parameters().
:param cql_alpha_lr: The learning rate of cql_log_alpha.
:param cql_weight:
:param tau: Parameter for soft update of the target network.
:param gamma: Discount factor, in [0, 1].
:param alpha: Entropy regularization coefficient or a tuple
(target_entropy, log_alpha, alpha_optim) for automatic tuning.
:param temperature:
:param with_lagrange: Whether to use Lagrange.
TODO: extend documentation - what does this mean?
:param lagrange_threshold: The value of tau in CQL(Lagrange).
:param min_action: The minimum value of each dimension of action.
:param max_action: The maximum value of each dimension of action.
:param num_repeat_actions: The number of times the action is repeated when calculating log-sum-exp.
:param alpha_min: Lower bound for clipping cql_alpha.
:param alpha_max: Upper bound for clipping cql_alpha.
:param clip_grad: Clip_grad for updating critic network.
:param calibrated: calibrate Q-values as in CalQL paper `arXiv:2303.05479`.
Useful for offline pre-training followed by online training,
and also was observed to achieve better results than vanilla cql.
:param device: Which device to create this model on.
:param estimation_step: Estimation steps.
:param exploration_noise: Type of exploration noise.
:param deterministic_eval: Flag for deterministic evaluation.
:param action_scaling: Flag for action scaling.
:param action_bound_method: Method for action bounding. Only used if the
action_space is continuous.
:param observation_space: Env's Observation space.
:param lr_scheduler: a learning rate scheduler that adjusts the learning rate in
optimizer in each policy.update().
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(
self,
*,
actor: ActorProb,
actor_optim: torch.optim.Optimizer,
critic: torch.nn.Module,
critic_optim: torch.optim.Optimizer,
action_space: gym.spaces.Box,
critic2: torch.nn.Module | None = None,
critic2_optim: torch.optim.Optimizer | None = None,
cql_alpha_lr: float = 1e-4,
cql_weight: float = 1.0,
tau: float = 0.005,
gamma: float = 0.99,
alpha: float | tuple[float, torch.Tensor, torch.optim.Optimizer] = 0.2,
temperature: float = 1.0,
with_lagrange: bool = True,
lagrange_threshold: float = 10.0,
min_action: float = -1.0,
max_action: float = 1.0,
num_repeat_actions: int = 10,
alpha_min: float = 0.0,
alpha_max: float = 1e6,
clip_grad: float = 1.0,
calibrated: bool = True,
# TODO: why does this one have device? Almost no other policies have it
device: str | torch.device = "cpu",
estimation_step: int = 1,
exploration_noise: BaseNoise | Literal["default"] | None = None,
deterministic_eval: bool = True,
action_scaling: bool = True,
action_bound_method: Literal["clip"] | None = "clip",
observation_space: gym.Space | None = None,
lr_scheduler: TLearningRateScheduler | None = None,
) -> None:
super().__init__(
actor=actor,
actor_optim=actor_optim,
critic=critic,
critic_optim=critic_optim,
action_space=action_space,
critic2=critic2,
critic2_optim=critic2_optim,
tau=tau,
gamma=gamma,
deterministic_eval=deterministic_eval,
alpha=alpha,
exploration_noise=exploration_noise,
estimation_step=estimation_step,
action_scaling=action_scaling,
action_bound_method=action_bound_method,
observation_space=observation_space,
lr_scheduler=lr_scheduler,
)
# There are _target_entropy, _log_alpha, _alpha_optim in SACPolicy.
self.device = device
self.temperature = temperature
self.with_lagrange = with_lagrange
self.lagrange_threshold = lagrange_threshold
self.cql_weight = cql_weight
self.cql_log_alpha = torch.tensor([0.0], requires_grad=True)
self.cql_alpha_optim = torch.optim.Adam([self.cql_log_alpha], lr=cql_alpha_lr)
self.cql_log_alpha = self.cql_log_alpha.to(device)
self.min_action = min_action
self.max_action = max_action
self.num_repeat_actions = num_repeat_actions
self.alpha_min = alpha_min
self.alpha_max = alpha_max
self.clip_grad = clip_grad
self.calibrated = calibrated
def train(self, mode: bool = True) -> Self:
"""Set the module in training mode, except for the target network."""
self.training = mode
self.actor.train(mode)
self.critic.train(mode)
self.critic2.train(mode)
return self
def sync_weight(self) -> None:
"""Soft-update the weight for the target network."""
self.soft_update(self.critic_old, self.critic, self.tau)
self.soft_update(self.critic2_old, self.critic2, self.tau)
def actor_pred(self, obs: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
batch = Batch(obs=obs, info=[None] * len(obs))
obs_result = self(batch)
return obs_result.act, obs_result.log_prob
def calc_actor_loss(self, obs: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
act_pred, log_pi = self.actor_pred(obs)
q1 = self.critic(obs, act_pred)
q2 = self.critic2(obs, act_pred)
min_Q = torch.min(q1, q2)
# self.alpha: float | torch.Tensor
actor_loss = (self.alpha * log_pi - min_Q).mean()
# actor_loss.shape: (), log_pi.shape: (batch_size, 1)
return actor_loss, log_pi
def calc_pi_values(
self,
obs_pi: torch.Tensor,
obs_to_pred: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
act_pred, log_pi = self.actor_pred(obs_pi)
q1 = self.critic(obs_to_pred, act_pred)
q2 = self.critic2(obs_to_pred, act_pred)
return q1 - log_pi.detach(), q2 - log_pi.detach()
def calc_random_values(
self,
obs: torch.Tensor,
act: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
random_value1 = self.critic(obs, act)
random_log_prob1 = np.log(0.5 ** act.shape[-1])
random_value2 = self.critic2(obs, act)
random_log_prob2 = np.log(0.5 ** act.shape[-1])
return random_value1 - random_log_prob1, random_value2 - random_log_prob2
@override
def process_buffer(self, buffer: TBuffer) -> TBuffer:
"""If `self.calibrated = True`, adds `calibration_returns` to buffer._meta.
:param buffer:
:return:
"""
if self.calibrated:
# otherwise _meta hack cannot work
assert isinstance(buffer, ReplayBuffer)
batch, indices = buffer.sample(0)
returns, _ = self.compute_episodic_return(
batch=batch,
buffer=buffer,
indices=indices,
gamma=self.gamma,
gae_lambda=1.0,
)
# TODO: don't access _meta directly
buffer._meta = cast(
RolloutBatchProtocol,
Batch(**buffer._meta.__dict__, calibration_returns=returns),
)
return buffer
def process_fn(
self,
batch: RolloutBatchProtocol,
buffer: ReplayBuffer,
indices: np.ndarray,
) -> RolloutBatchProtocol:
# TODO: mypy rightly complains here b/c the design violates
# Liskov Substitution Principle
# DDPGPolicy.process_fn() results in a batch with returns but
# CQLPolicy.process_fn() doesn't add the returns.
# Should probably be fixed!
return batch
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
batch: Batch = to_torch(batch, dtype=torch.float, device=self.device)
obs, act, rew, obs_next = batch.obs, batch.act, batch.rew, batch.obs_next
batch_size = obs.shape[0]
# compute actor loss and update actor
actor_loss, log_pi = self.calc_actor_loss(obs)
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
# compute alpha loss
if self.is_auto_alpha:
log_pi = log_pi + self.target_entropy
alpha_loss = -(self.log_alpha * log_pi.detach()).mean()
self.alpha_optim.zero_grad()
# update log_alpha
alpha_loss.backward()
self.alpha_optim.step()
# update alpha
# TODO: it's probably a bad idea to track both alpha and log_alpha in different fields
self.alpha = self.log_alpha.detach().exp()
# compute target_Q
with torch.no_grad():
act_next, new_log_pi = self.actor_pred(obs_next)
target_Q1 = self.critic_old(obs_next, act_next)
target_Q2 = self.critic2_old(obs_next, act_next)
target_Q = torch.min(target_Q1, target_Q2) - self.alpha * new_log_pi
target_Q = rew + self.gamma * (1 - batch.done) * target_Q.flatten()
# shape: (batch_size)
# compute critic loss
current_Q1 = self.critic(obs, act).flatten()
current_Q2 = self.critic2(obs, act).flatten()
# shape: (batch_size)
critic1_loss = F.mse_loss(current_Q1, target_Q)
critic2_loss = F.mse_loss(current_Q2, target_Q)
# CQL
random_actions = (
torch.FloatTensor(batch_size * self.num_repeat_actions, act.shape[-1])
.uniform_(-self.min_action, self.max_action)
.to(self.device)
)
obs_len = len(obs.shape)
repeat_size = [1, self.num_repeat_actions] + [1] * (obs_len - 1)
view_size = [batch_size * self.num_repeat_actions, *list(obs.shape[1:])]
tmp_obs = obs.unsqueeze(1).repeat(*repeat_size).view(*view_size)
tmp_obs_next = obs_next.unsqueeze(1).repeat(*repeat_size).view(*view_size)
# tmp_obs & tmp_obs_next: (batch_size * num_repeat, state_dim)
current_pi_value1, current_pi_value2 = self.calc_pi_values(tmp_obs, tmp_obs)
next_pi_value1, next_pi_value2 = self.calc_pi_values(tmp_obs_next, tmp_obs)
random_value1, random_value2 = self.calc_random_values(tmp_obs, random_actions)
for value in [
current_pi_value1,
current_pi_value2,
next_pi_value1,
next_pi_value2,
random_value1,
random_value2,
]:
value.reshape(batch_size, self.num_repeat_actions, 1)
if self.calibrated:
returns = (
batch.calibration_returns.unsqueeze(1)
.repeat(
(1, self.num_repeat_actions),
)
.view(-1, 1)
)
random_value1 = torch.max(random_value1, returns)
random_value2 = torch.max(random_value2, returns)
current_pi_value1 = torch.max(current_pi_value1, returns)
current_pi_value2 = torch.max(current_pi_value2, returns)
next_pi_value1 = torch.max(next_pi_value1, returns)
next_pi_value2 = torch.max(next_pi_value2, returns)
# cat q values
cat_q1 = torch.cat([random_value1, current_pi_value1, next_pi_value1], 1)
cat_q2 = torch.cat([random_value2, current_pi_value2, next_pi_value2], 1)
# shape: (batch_size, 3 * num_repeat, 1)
cql1_scaled_loss = (
torch.logsumexp(cat_q1 / self.temperature, dim=1).mean()
* self.cql_weight
* self.temperature
- current_Q1.mean() * self.cql_weight
)
cql2_scaled_loss = (
torch.logsumexp(cat_q2 / self.temperature, dim=1).mean()
* self.cql_weight
* self.temperature
- current_Q2.mean() * self.cql_weight
)
# shape: (1)
if self.with_lagrange:
cql_alpha = torch.clamp(
self.cql_log_alpha.exp(),
self.alpha_min,
self.alpha_max,
)
cql1_scaled_loss = cql_alpha * (cql1_scaled_loss - self.lagrange_threshold)
cql2_scaled_loss = cql_alpha * (cql2_scaled_loss - self.lagrange_threshold)
self.cql_alpha_optim.zero_grad()
cql_alpha_loss = -(cql1_scaled_loss + cql2_scaled_loss) * 0.5
cql_alpha_loss.backward(retain_graph=True)
self.cql_alpha_optim.step()
critic1_loss = critic1_loss + cql1_scaled_loss
critic2_loss = critic2_loss + cql2_scaled_loss
# update critic
self.critic_optim.zero_grad()
critic1_loss.backward(retain_graph=True)
# clip grad, prevent the vanishing gradient problem
# It doesn't seem necessary
clip_grad_norm_(self.critic.parameters(), self.clip_grad)
self.critic_optim.step()
self.critic2_optim.zero_grad()
critic2_loss.backward()
clip_grad_norm_(self.critic2.parameters(), self.clip_grad)
self.critic2_optim.step()
self.sync_weight()
result = {
"loss/actor": actor_loss.item(),
"loss/critic1": critic1_loss.item(),
"loss/critic2": critic2_loss.item(),
}
if self.is_auto_alpha:
self.alpha = cast(torch.Tensor, self.alpha)
result["loss/alpha"] = alpha_loss.item()
result["alpha"] = self.alpha.item()
if self.with_lagrange:
result["loss/cql_alpha"] = cql_alpha_loss.item()
result["cql_alpha"] = cql_alpha.item()
return result