This PR adds a new method for getting actions from an env's observation and info. This is useful for standard inference and stands in contrast to batch-based methods that are currently used in training and evaluation. Without this, users have to do some kind of gymnastics to actually perform inference with a trained policy. I have also added a test for the new method. In future PRs, this method should be included in the examples (in the the "watch" section). To add this required improving multiple typing things and, importantly, _simplifying the signature of `forward` in many policies!_ This is a **breaking change**, but it will likely affect no users. The `input` parameter of forward was a rather hacky mechanism, I believe it is good that it's gone now. It will also help with #948 . The main functional change is the addition of `compute_action` to `BasePolicy`. Other minor changes: - improvements in typing - updated PR and Issue templates - Improved handling of `max_action_num` Closes #981
161 lines
6.2 KiB
Python
161 lines
6.2 KiB
Python
import math
|
|
from typing import Any, Self, cast
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from tianshou.data import Batch, ReplayBuffer, to_torch
|
|
from tianshou.data.types import (
|
|
ImitationBatchProtocol,
|
|
ObsBatchProtocol,
|
|
RolloutBatchProtocol,
|
|
)
|
|
from tianshou.policy import DQNPolicy
|
|
from tianshou.policy.base import TLearningRateScheduler
|
|
|
|
|
|
class DiscreteBCQPolicy(DQNPolicy):
|
|
"""Implementation of discrete BCQ algorithm. arXiv:1910.01708.
|
|
|
|
:param model: a model following the rules in
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> q_value)
|
|
:param imitator: a model following the rules in
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> imitation_logits)
|
|
:param optim: a torch.optim for optimizing the model.
|
|
:param discount_factor: in [0, 1].
|
|
:param estimation_step: the number of steps to look ahead
|
|
:param target_update_freq: the target network update frequency.
|
|
:param eval_eps: the epsilon-greedy noise added in evaluation.
|
|
:param unlikely_action_threshold: the threshold (tau) for unlikely
|
|
actions, as shown in Equ. (17) in the paper.
|
|
:param imitation_logits_penalty: regularization weight for imitation
|
|
logits.
|
|
:param estimation_step: the number of steps to look ahead.
|
|
:param target_update_freq: the target network update frequency (0 if
|
|
you do not use the target network).
|
|
:param reward_normalization: normalize the **returns** to Normal(0, 1).
|
|
TODO: rename to return_normalization?
|
|
:param is_double: use double dqn.
|
|
:param clip_loss_grad: clip the gradient of the loss in accordance
|
|
with nature14236; this amounts to using the Huber loss instead of
|
|
the MSE loss.
|
|
:param observation_space: Env's observation space.
|
|
:param lr_scheduler: if not None, will be called in `policy.update()`.
|
|
|
|
.. seealso::
|
|
|
|
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
|
|
explanation.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
model: torch.nn.Module,
|
|
imitator: torch.nn.Module,
|
|
optim: torch.optim.Optimizer,
|
|
action_space: gym.spaces.Discrete,
|
|
discount_factor: float = 0.99,
|
|
estimation_step: int = 1,
|
|
target_update_freq: int = 8000,
|
|
eval_eps: float = 1e-3,
|
|
unlikely_action_threshold: float = 0.3,
|
|
imitation_logits_penalty: float = 1e-2,
|
|
reward_normalization: bool = False,
|
|
is_double: bool = True,
|
|
clip_loss_grad: bool = False,
|
|
observation_space: gym.Space | None = None,
|
|
lr_scheduler: TLearningRateScheduler | None = None,
|
|
) -> None:
|
|
super().__init__(
|
|
model=model,
|
|
optim=optim,
|
|
action_space=action_space,
|
|
discount_factor=discount_factor,
|
|
estimation_step=estimation_step,
|
|
target_update_freq=target_update_freq,
|
|
reward_normalization=reward_normalization,
|
|
is_double=is_double,
|
|
clip_loss_grad=clip_loss_grad,
|
|
observation_space=observation_space,
|
|
lr_scheduler=lr_scheduler,
|
|
)
|
|
assert (
|
|
target_update_freq > 0
|
|
), f"BCQ needs target_update_freq>0 but got: {target_update_freq}."
|
|
self.imitator = imitator
|
|
assert (
|
|
0.0 <= unlikely_action_threshold < 1.0
|
|
), f"unlikely_action_threshold should be in [0, 1) but got: {unlikely_action_threshold}"
|
|
if unlikely_action_threshold > 0:
|
|
self._log_tau = math.log(unlikely_action_threshold)
|
|
else:
|
|
self._log_tau = -np.inf
|
|
assert 0.0 <= eval_eps < 1.0
|
|
self.eps = eval_eps
|
|
self._weight_reg = imitation_logits_penalty
|
|
|
|
def train(self, mode: bool = True) -> Self:
|
|
self.training = mode
|
|
self.model.train(mode)
|
|
self.imitator.train(mode)
|
|
return self
|
|
|
|
def _target_q(self, buffer: ReplayBuffer, indices: np.ndarray) -> torch.Tensor:
|
|
batch = buffer[indices] # batch.obs_next: s_{t+n}
|
|
next_obs_batch = Batch(obs=batch.obs_next, info=[None] * len(batch))
|
|
# target_Q = Q_old(s_, argmax(Q_new(s_, *)))
|
|
act = self(next_obs_batch).act
|
|
target_q, _ = self.model_old(batch.obs_next)
|
|
return target_q[np.arange(len(act)), act]
|
|
|
|
def forward( # type: ignore
|
|
self,
|
|
batch: ObsBatchProtocol,
|
|
state: dict | Batch | np.ndarray | None = None,
|
|
**kwargs: Any,
|
|
) -> ImitationBatchProtocol:
|
|
# TODO: Liskov substitution principle is violated here, the superclass
|
|
# produces a batch with the field logits, but this one doesn't.
|
|
# Should be fixed in the future!
|
|
q_value, state = self.model(batch.obs, state=state, info=batch.info)
|
|
if self.max_action_num is None:
|
|
self.max_action_num = q_value.shape[1]
|
|
imitation_logits, _ = self.imitator(batch.obs, state=state, info=batch.info)
|
|
|
|
# mask actions for argmax
|
|
ratio = imitation_logits - imitation_logits.max(dim=-1, keepdim=True).values
|
|
mask = (ratio < self._log_tau).float()
|
|
act = (q_value - np.inf * mask).argmax(dim=-1)
|
|
|
|
result = Batch(act=act, state=state, q_value=q_value, imitation_logits=imitation_logits)
|
|
return cast(ImitationBatchProtocol, result)
|
|
|
|
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> dict[str, float]:
|
|
if self._iter % self.freq == 0:
|
|
self.sync_weight()
|
|
self._iter += 1
|
|
|
|
target_q = batch.returns.flatten()
|
|
result = self(batch)
|
|
imitation_logits = result.imitation_logits
|
|
current_q = result.q_value[np.arange(len(target_q)), batch.act]
|
|
act = to_torch(batch.act, dtype=torch.long, device=target_q.device)
|
|
q_loss = F.smooth_l1_loss(current_q, target_q)
|
|
i_loss = F.nll_loss(F.log_softmax(imitation_logits, dim=-1), act)
|
|
reg_loss = imitation_logits.pow(2).mean()
|
|
loss = q_loss + i_loss + self._weight_reg * reg_loss
|
|
|
|
self.optim.zero_grad()
|
|
loss.backward()
|
|
self.optim.step()
|
|
|
|
return {
|
|
"loss": loss.item(),
|
|
"loss/q": q_loss.item(),
|
|
"loss/i": i_loss.item(),
|
|
"loss/reg": reg_loss.item(),
|
|
}
|