Tianshou/setup.py
Trinkle23897 34f714a677 Numba acceleration (#193)
Training FPS improvement (base commit is 94bfb32):
test_pdqn: 1660 (without numba) -> 1930
discrete/test_ppo: 5100 -> 5170

since nstep has little impact on overall performance, the unit test result is:
GAE: 4.1s -> 0.057s
nstep: 0.3s -> 0.15s (little improvement)

Others:
- fix a bug in ttt set_eps
- keep only sumtree in segment tree implementation
- dirty fix for asyncVenv check_id test
2020-09-02 13:03:32 +08:00

70 lines
2.1 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from setuptools import setup, find_packages
setup(
name='tianshou',
version='0.2.6',
description='A Library for Deep Reinforcement Learning',
long_description=open('README.md', encoding='utf8').read(),
long_description_content_type='text/markdown',
url='https://github.com/thu-ml/tianshou',
author='TSAIL',
author_email='trinkle23897@gmail.com',
license='MIT',
python_requires='>=3.6',
classifiers=[
# How mature is this project? Common values are
# 3 - Alpha
# 4 - Beta
# 5 - Production/Stable
'Development Status :: 3 - Alpha',
# Indicate who your project is intended for
'Intended Audience :: Science/Research',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Software Development :: Libraries :: Python Modules',
# Pick your license as you wish (should match "license" above)
'License :: OSI Approved :: MIT License',
# Specify the Python versions you support here. In particular, ensure
# that you indicate whether you support Python 2, Python 3 or both.
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
],
keywords='reinforcement learning platform pytorch',
packages=find_packages(exclude=['test', 'test.*',
'examples', 'examples.*',
'docs', 'docs.*']),
install_requires=[
'gym>=0.15.4',
'tqdm',
'numpy',
'tensorboard',
'torch>=1.4.0',
'numba>=0.51.0',
],
extras_require={
'dev': [
'Sphinx',
'sphinx_rtd_theme',
'sphinxcontrib-bibtex',
'flake8',
'pytest',
'pytest-cov',
'ray>=0.8.0',
],
'atari': [
'atari_py',
'cv2',
],
'mujoco': [
'mujoco_py',
],
'pybullet': [
'pybullet',
],
},
)