Closes #952 - `SamplingConfig` supports `batch_size=None`. #1077 - tests and examples are covered by `mypy`. #1077 - `NetBase` is more used, stricter typing by making it generic. #1077 - `utils.net.common.Recurrent` now receives and returns a `RecurrentStateBatch` instead of a dict. #1077 --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
288 lines
8.5 KiB
Python
Executable File
288 lines
8.5 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import os
|
|
import re
|
|
from typing import Any, Literal
|
|
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.ticker as mticker
|
|
import numpy as np
|
|
from tools import csv2numpy, find_all_files, group_files
|
|
|
|
|
|
def smooth(
|
|
y: np.ndarray,
|
|
radius: int,
|
|
mode: Literal["two_sided", "causal"] = "two_sided",
|
|
valid_only: bool = False,
|
|
) -> np.ndarray:
|
|
"""Smooth signal y, where radius is determines the size of the window.
|
|
|
|
mode='twosided':
|
|
average over the window [max(index - radius, 0), min(index + radius, len(y)-1)]
|
|
mode='causal':
|
|
average over the window [max(index - radius, 0), index]
|
|
valid_only: put nan in entries where the full-sized window is not available
|
|
"""
|
|
if len(y) < 2 * radius + 1:
|
|
return np.ones_like(y) * y.mean()
|
|
if mode == "two_sided":
|
|
convkernel = np.ones(2 * radius + 1)
|
|
out = np.convolve(y, convkernel, mode="same") / np.convolve(
|
|
np.ones_like(y),
|
|
convkernel,
|
|
mode="same",
|
|
)
|
|
if valid_only:
|
|
out[:radius] = out[-radius:] = np.nan
|
|
elif mode == "causal":
|
|
convkernel = np.ones(radius)
|
|
out = np.convolve(y, convkernel, mode="full") / np.convolve(
|
|
np.ones_like(y),
|
|
convkernel,
|
|
mode="full",
|
|
)
|
|
out = out[: -radius + 1]
|
|
if valid_only:
|
|
out[:radius] = np.nan
|
|
return out
|
|
|
|
|
|
COLORS = [
|
|
# deepmind style
|
|
"#0072B2",
|
|
"#009E73",
|
|
"#D55E00",
|
|
"#CC79A7",
|
|
# '#F0E442',
|
|
"#d73027", # RED
|
|
# built-in color
|
|
"blue",
|
|
"red",
|
|
"pink",
|
|
"cyan",
|
|
"magenta",
|
|
"yellow",
|
|
"black",
|
|
"purple",
|
|
"brown",
|
|
"orange",
|
|
"teal",
|
|
"lightblue",
|
|
"lime",
|
|
"lavender",
|
|
"turquoise",
|
|
"darkgreen",
|
|
"tan",
|
|
"salmon",
|
|
"gold",
|
|
"darkred",
|
|
"darkblue",
|
|
"green",
|
|
# personal color
|
|
"#313695", # DARK BLUE
|
|
"#74add1", # LIGHT BLUE
|
|
"#f46d43", # ORANGE
|
|
"#4daf4a", # GREEN
|
|
"#984ea3", # PURPLE
|
|
"#f781bf", # PINK
|
|
"#ffc832", # YELLOW
|
|
"#000000", # BLACK
|
|
]
|
|
|
|
|
|
def plot_ax(
|
|
ax: plt.Axes,
|
|
file_lists: list[str],
|
|
legend_pattern: str = ".*",
|
|
xlabel: str | None = None,
|
|
ylabel: str | None = None,
|
|
title: str = "",
|
|
xlim: float | None = None,
|
|
xkey: str = "env_step",
|
|
ykey: str = "reward",
|
|
smooth_radius: int = 0,
|
|
shaded_std: bool = True,
|
|
legend_outside: bool = False,
|
|
) -> None:
|
|
def legend_fn(x: str) -> str:
|
|
# return os.path.split(os.path.join(
|
|
# args.root_dir, x))[0].replace('/', '_') + " (10)"
|
|
match = re.search(legend_pattern, x)
|
|
assert match is not None # for mypy
|
|
return match.group(0)
|
|
|
|
legneds = map(legend_fn, file_lists)
|
|
# sort filelist according to legends
|
|
file_lists = [f for _, f in sorted(zip(legneds, file_lists, strict=True))]
|
|
legneds = list(map(legend_fn, file_lists))
|
|
|
|
for index, csv_file in enumerate(file_lists):
|
|
csv_dict = csv2numpy(csv_file)
|
|
x, y = csv_dict[xkey], csv_dict[ykey]
|
|
y = smooth(y, radius=smooth_radius)
|
|
color = COLORS[index % len(COLORS)]
|
|
ax.plot(x, y, color=color)
|
|
if shaded_std and ykey + ":shaded" in csv_dict:
|
|
y_shaded = smooth(csv_dict[ykey + ":shaded"], radius=smooth_radius)
|
|
ax.fill_between(x, y - y_shaded, y + y_shaded, color=color, alpha=0.2)
|
|
|
|
ax.legend(
|
|
legneds,
|
|
loc=2 if legend_outside else None,
|
|
bbox_to_anchor=(1, 1) if legend_outside else None,
|
|
)
|
|
ax.xaxis.set_major_formatter(mticker.EngFormatter())
|
|
if xlim is not None:
|
|
ax.set_xlim(xmin=0, xmax=xlim)
|
|
# add title
|
|
ax.set_title(title)
|
|
# add labels
|
|
if xlabel is not None:
|
|
ax.set_xlabel(xlabel)
|
|
if ylabel is not None:
|
|
ax.set_ylabel(ylabel)
|
|
|
|
|
|
def plot_figure(
|
|
file_lists: list[str],
|
|
group_pattern: str | None = None,
|
|
fig_length: int = 6,
|
|
fig_width: int = 6,
|
|
sharex: bool = False,
|
|
sharey: bool = False,
|
|
title: str = "",
|
|
**kwargs: Any,
|
|
) -> None:
|
|
if not group_pattern:
|
|
fig, ax = plt.subplots(figsize=(fig_length, fig_width))
|
|
plot_ax(ax, file_lists, title=title, **kwargs)
|
|
else:
|
|
res = group_files(file_lists, group_pattern)
|
|
row_n = int(np.ceil(len(res) / 3))
|
|
col_n = min(len(res), 3)
|
|
fig, axes = plt.subplots(
|
|
row_n,
|
|
col_n,
|
|
sharex=sharex,
|
|
sharey=sharey,
|
|
figsize=(fig_length * col_n, fig_width * row_n),
|
|
squeeze=False,
|
|
)
|
|
axes = axes.flatten()
|
|
for i, (k, v) in enumerate(res.items()):
|
|
plot_ax(axes[i], v, title=k, **kwargs)
|
|
if title: # add title
|
|
fig.suptitle(title, fontsize=20)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="plotter")
|
|
parser.add_argument(
|
|
"--fig-length",
|
|
type=int,
|
|
default=6,
|
|
help="matplotlib figure length (default: 6)",
|
|
)
|
|
parser.add_argument(
|
|
"--fig-width",
|
|
type=int,
|
|
default=6,
|
|
help="matplotlib figure width (default: 6)",
|
|
)
|
|
parser.add_argument(
|
|
"--style",
|
|
default="seaborn",
|
|
help="matplotlib figure style (default: seaborn)",
|
|
)
|
|
parser.add_argument("--title", default=None, help="matplotlib figure title (default: None)")
|
|
parser.add_argument(
|
|
"--xkey",
|
|
default="env_step",
|
|
help="x-axis key in csv file (default: env_step)",
|
|
)
|
|
parser.add_argument("--ykey", default="rew", help="y-axis key in csv file (default: rew)")
|
|
parser.add_argument(
|
|
"--smooth",
|
|
type=int,
|
|
default=0,
|
|
help="smooth radius of y axis (default: 0)",
|
|
)
|
|
parser.add_argument("--xlabel", default="Timesteps", help="matplotlib figure xlabel")
|
|
parser.add_argument("--ylabel", default="Episode Reward", help="matplotlib figure ylabel")
|
|
parser.add_argument(
|
|
"--shaded-std",
|
|
action="store_true",
|
|
help="shaded region corresponding to standard deviation of the group",
|
|
)
|
|
parser.add_argument(
|
|
"--sharex",
|
|
action="store_true",
|
|
help="whether to share x axis within multiple sub-figures",
|
|
)
|
|
parser.add_argument(
|
|
"--sharey",
|
|
action="store_true",
|
|
help="whether to share y axis within multiple sub-figures",
|
|
)
|
|
parser.add_argument(
|
|
"--legend-outside",
|
|
action="store_true",
|
|
help="place the legend outside of the figure",
|
|
)
|
|
parser.add_argument("--xlim", type=int, default=None, help="x-axis limitation (default: None)")
|
|
parser.add_argument("--root-dir", default="./", help="root dir (default: ./)")
|
|
parser.add_argument(
|
|
"--file-pattern",
|
|
type=str,
|
|
default=r".*/test_rew_\d+seeds.csv$",
|
|
help="regular expression to determine whether or not to include target csv "
|
|
"file, default to including all test_rew_{num}seeds.csv file under rootdir",
|
|
)
|
|
parser.add_argument(
|
|
"--group-pattern",
|
|
type=str,
|
|
default=r"(/|^)\w*?\-v(\d|$)",
|
|
help="regular expression to group files in sub-figure, default to grouping "
|
|
'according to env_name dir, "" means no grouping',
|
|
)
|
|
parser.add_argument(
|
|
"--legend-pattern",
|
|
type=str,
|
|
default=r".*",
|
|
help="regular expression to extract legend from csv file path, default to "
|
|
"using file path as legend name.",
|
|
)
|
|
parser.add_argument("--show", action="store_true", help="show figure")
|
|
parser.add_argument("--output-path", type=str, help="figure save path", default="./figure.png")
|
|
parser.add_argument("--dpi", type=int, default=200, help="figure dpi (default: 200)")
|
|
args = parser.parse_args()
|
|
file_lists = find_all_files(args.root_dir, re.compile(args.file_pattern))
|
|
file_lists = [os.path.relpath(f, args.root_dir) for f in file_lists]
|
|
if args.style:
|
|
plt.style.use(args.style)
|
|
os.chdir(args.root_dir)
|
|
plot_figure(
|
|
file_lists,
|
|
group_pattern=args.group_pattern,
|
|
legend_pattern=args.legend_pattern,
|
|
fig_length=args.fig_length,
|
|
fig_width=args.fig_width,
|
|
title=args.title,
|
|
xlabel=args.xlabel,
|
|
ylabel=args.ylabel,
|
|
xkey=args.xkey,
|
|
ykey=args.ykey,
|
|
xlim=args.xlim,
|
|
sharex=args.sharex,
|
|
sharey=args.sharey,
|
|
smooth_radius=args.smooth,
|
|
shaded_std=args.shaded_std,
|
|
legend_outside=args.legend_outside,
|
|
)
|
|
if args.output_path:
|
|
plt.savefig(args.output_path, dpi=args.dpi, bbox_inches="tight")
|
|
if args.show:
|
|
plt.show()
|