* add makefile * bump version * add isort and yapf * update contributing.md * update PR template * spelling check
		
			
				
	
	
		
			169 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import argparse
 | 
						|
import os
 | 
						|
import pprint
 | 
						|
 | 
						|
import gym
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from torch import nn
 | 
						|
from torch.distributions import Independent, Normal
 | 
						|
from torch.utils.tensorboard import SummaryWriter
 | 
						|
 | 
						|
from tianshou.data import Collector, VectorReplayBuffer
 | 
						|
from tianshou.env import DummyVectorEnv
 | 
						|
from tianshou.policy import NPGPolicy
 | 
						|
from tianshou.trainer import onpolicy_trainer
 | 
						|
from tianshou.utils import TensorboardLogger
 | 
						|
from tianshou.utils.net.common import Net
 | 
						|
from tianshou.utils.net.continuous import ActorProb, Critic
 | 
						|
 | 
						|
 | 
						|
def get_args():
 | 
						|
    parser = argparse.ArgumentParser()
 | 
						|
    parser.add_argument('--task', type=str, default='Pendulum-v0')
 | 
						|
    parser.add_argument('--seed', type=int, default=1)
 | 
						|
    parser.add_argument('--buffer-size', type=int, default=50000)
 | 
						|
    parser.add_argument('--lr', type=float, default=1e-3)
 | 
						|
    parser.add_argument('--gamma', type=float, default=0.95)
 | 
						|
    parser.add_argument('--epoch', type=int, default=5)
 | 
						|
    parser.add_argument('--step-per-epoch', type=int, default=50000)
 | 
						|
    parser.add_argument('--step-per-collect', type=int, default=2048)
 | 
						|
    parser.add_argument(
 | 
						|
        '--repeat-per-collect', type=int, default=2
 | 
						|
    )  # theoretically it should be 1
 | 
						|
    parser.add_argument('--batch-size', type=int, default=99999)
 | 
						|
    parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
 | 
						|
    parser.add_argument('--training-num', type=int, default=16)
 | 
						|
    parser.add_argument('--test-num', type=int, default=10)
 | 
						|
    parser.add_argument('--logdir', type=str, default='log')
 | 
						|
    parser.add_argument('--render', type=float, default=0.)
 | 
						|
    parser.add_argument(
 | 
						|
        '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
 | 
						|
    )
 | 
						|
    # npg special
 | 
						|
    parser.add_argument('--gae-lambda', type=float, default=0.95)
 | 
						|
    parser.add_argument('--rew-norm', type=int, default=1)
 | 
						|
    parser.add_argument('--norm-adv', type=int, default=1)
 | 
						|
    parser.add_argument('--optim-critic-iters', type=int, default=5)
 | 
						|
    parser.add_argument('--actor-step-size', type=float, default=0.5)
 | 
						|
    args = parser.parse_known_args()[0]
 | 
						|
    return args
 | 
						|
 | 
						|
 | 
						|
def test_npg(args=get_args()):
 | 
						|
    env = gym.make(args.task)
 | 
						|
    if args.task == 'Pendulum-v0':
 | 
						|
        env.spec.reward_threshold = -250
 | 
						|
    args.state_shape = env.observation_space.shape or env.observation_space.n
 | 
						|
    args.action_shape = env.action_space.shape or env.action_space.n
 | 
						|
    args.max_action = env.action_space.high[0]
 | 
						|
    # you can also use tianshou.env.SubprocVectorEnv
 | 
						|
    # train_envs = gym.make(args.task)
 | 
						|
    train_envs = DummyVectorEnv(
 | 
						|
        [lambda: gym.make(args.task) for _ in range(args.training_num)]
 | 
						|
    )
 | 
						|
    # test_envs = gym.make(args.task)
 | 
						|
    test_envs = DummyVectorEnv(
 | 
						|
        [lambda: gym.make(args.task) for _ in range(args.test_num)]
 | 
						|
    )
 | 
						|
    # seed
 | 
						|
    np.random.seed(args.seed)
 | 
						|
    torch.manual_seed(args.seed)
 | 
						|
    train_envs.seed(args.seed)
 | 
						|
    test_envs.seed(args.seed)
 | 
						|
    # model
 | 
						|
    net = Net(
 | 
						|
        args.state_shape,
 | 
						|
        hidden_sizes=args.hidden_sizes,
 | 
						|
        activation=nn.Tanh,
 | 
						|
        device=args.device
 | 
						|
    )
 | 
						|
    actor = ActorProb(
 | 
						|
        net,
 | 
						|
        args.action_shape,
 | 
						|
        max_action=args.max_action,
 | 
						|
        unbounded=True,
 | 
						|
        device=args.device
 | 
						|
    ).to(args.device)
 | 
						|
    critic = Critic(
 | 
						|
        Net(
 | 
						|
            args.state_shape,
 | 
						|
            hidden_sizes=args.hidden_sizes,
 | 
						|
            device=args.device,
 | 
						|
            activation=nn.Tanh
 | 
						|
        ),
 | 
						|
        device=args.device
 | 
						|
    ).to(args.device)
 | 
						|
    # orthogonal initialization
 | 
						|
    for m in list(actor.modules()) + list(critic.modules()):
 | 
						|
        if isinstance(m, torch.nn.Linear):
 | 
						|
            torch.nn.init.orthogonal_(m.weight)
 | 
						|
            torch.nn.init.zeros_(m.bias)
 | 
						|
    optim = torch.optim.Adam(critic.parameters(), lr=args.lr)
 | 
						|
 | 
						|
    # replace DiagGuassian with Independent(Normal) which is equivalent
 | 
						|
    # pass *logits to be consistent with policy.forward
 | 
						|
    def dist(*logits):
 | 
						|
        return Independent(Normal(*logits), 1)
 | 
						|
 | 
						|
    policy = NPGPolicy(
 | 
						|
        actor,
 | 
						|
        critic,
 | 
						|
        optim,
 | 
						|
        dist,
 | 
						|
        discount_factor=args.gamma,
 | 
						|
        reward_normalization=args.rew_norm,
 | 
						|
        advantage_normalization=args.norm_adv,
 | 
						|
        gae_lambda=args.gae_lambda,
 | 
						|
        action_space=env.action_space,
 | 
						|
        optim_critic_iters=args.optim_critic_iters,
 | 
						|
        actor_step_size=args.actor_step_size,
 | 
						|
        deterministic_eval=True
 | 
						|
    )
 | 
						|
    # collector
 | 
						|
    train_collector = Collector(
 | 
						|
        policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))
 | 
						|
    )
 | 
						|
    test_collector = Collector(policy, test_envs)
 | 
						|
    # log
 | 
						|
    log_path = os.path.join(args.logdir, args.task, 'npg')
 | 
						|
    writer = SummaryWriter(log_path)
 | 
						|
    logger = TensorboardLogger(writer)
 | 
						|
 | 
						|
    def save_fn(policy):
 | 
						|
        torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
 | 
						|
 | 
						|
    def stop_fn(mean_rewards):
 | 
						|
        return mean_rewards >= env.spec.reward_threshold
 | 
						|
 | 
						|
    # trainer
 | 
						|
    result = onpolicy_trainer(
 | 
						|
        policy,
 | 
						|
        train_collector,
 | 
						|
        test_collector,
 | 
						|
        args.epoch,
 | 
						|
        args.step_per_epoch,
 | 
						|
        args.repeat_per_collect,
 | 
						|
        args.test_num,
 | 
						|
        args.batch_size,
 | 
						|
        step_per_collect=args.step_per_collect,
 | 
						|
        stop_fn=stop_fn,
 | 
						|
        save_fn=save_fn,
 | 
						|
        logger=logger
 | 
						|
    )
 | 
						|
    assert stop_fn(result['best_reward'])
 | 
						|
 | 
						|
    if __name__ == '__main__':
 | 
						|
        pprint.pprint(result)
 | 
						|
        # Let's watch its performance!
 | 
						|
        env = gym.make(args.task)
 | 
						|
        policy.eval()
 | 
						|
        collector = Collector(policy, env)
 | 
						|
        result = collector.collect(n_episode=1, render=args.render)
 | 
						|
        rews, lens = result["rews"], result["lens"]
 | 
						|
        print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    test_npg()
 |