1. DQN learn should keep eps=0 2. Add a warning of env.seed in VecEnv 3. fix #162 of multi-dim action
85 lines
3.4 KiB
Python
85 lines
3.4 KiB
Python
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
|
|
from tianshou.data import to_torch
|
|
|
|
|
|
class Net(nn.Module):
|
|
"""Simple MLP backbone. For advanced usage (how to customize the network),
|
|
please refer to :ref:`build_the_network`.
|
|
|
|
:param concat: whether the input shape is concatenated by state_shape
|
|
and action_shape. If it is True, ``action_shape`` is not the output
|
|
shape, but affects the input shape.
|
|
"""
|
|
|
|
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu',
|
|
softmax=False, concat=False, hidden_layer_size=128):
|
|
super().__init__()
|
|
self.device = device
|
|
input_size = np.prod(state_shape)
|
|
if concat:
|
|
input_size += np.prod(action_shape)
|
|
self.model = [
|
|
nn.Linear(input_size, hidden_layer_size),
|
|
nn.ReLU(inplace=True)]
|
|
for i in range(layer_num):
|
|
self.model += [nn.Linear(hidden_layer_size, hidden_layer_size),
|
|
nn.ReLU(inplace=True)]
|
|
if action_shape and not concat:
|
|
self.model += [nn.Linear(hidden_layer_size, np.prod(action_shape))]
|
|
if softmax:
|
|
self.model += [nn.Softmax(dim=-1)]
|
|
self.model = nn.Sequential(*self.model)
|
|
|
|
def forward(self, s, state=None, info={}):
|
|
"""s -> flatten -> logits"""
|
|
s = to_torch(s, device=self.device, dtype=torch.float32)
|
|
s = s.reshape(s.size(0), -1)
|
|
logits = self.model(s)
|
|
return logits, state
|
|
|
|
|
|
class Recurrent(nn.Module):
|
|
"""Simple Recurrent network based on LSTM. For advanced usage (how to
|
|
customize the network), please refer to :ref:`build_the_network`.
|
|
"""
|
|
|
|
def __init__(self, layer_num, state_shape, action_shape,
|
|
device='cpu', hidden_layer_size=128):
|
|
super().__init__()
|
|
self.state_shape = state_shape
|
|
self.action_shape = action_shape
|
|
self.device = device
|
|
self.nn = nn.LSTM(input_size=hidden_layer_size,
|
|
hidden_size=hidden_layer_size,
|
|
num_layers=layer_num, batch_first=True)
|
|
self.fc1 = nn.Linear(np.prod(state_shape), hidden_layer_size)
|
|
self.fc2 = nn.Linear(hidden_layer_size, np.prod(action_shape))
|
|
|
|
def forward(self, s, state=None, info={}):
|
|
"""In the evaluation mode, s should be with shape ``[bsz, dim]``; in
|
|
the training mode, s should be with shape ``[bsz, len, dim]``. See the
|
|
code and comment for more detail.
|
|
"""
|
|
s = to_torch(s, device=self.device, dtype=torch.float32)
|
|
# s [bsz, len, dim] (training) or [bsz, dim] (evaluation)
|
|
# In short, the tensor's shape in training phase is longer than which
|
|
# in evaluation phase.
|
|
if len(s.shape) == 2:
|
|
s = s.unsqueeze(-2)
|
|
s = self.fc1(s)
|
|
self.nn.flatten_parameters()
|
|
if state is None:
|
|
s, (h, c) = self.nn(s)
|
|
else:
|
|
# we store the stack data in [bsz, len, ...] format
|
|
# but pytorch rnn needs [len, bsz, ...]
|
|
s, (h, c) = self.nn(s, (state['h'].transpose(0, 1).contiguous(),
|
|
state['c'].transpose(0, 1).contiguous()))
|
|
s = self.fc2(s[:, -1])
|
|
# please ensure the first dim is batch size: [bsz, len, ...]
|
|
return s, {'h': h.transpose(0, 1).detach(),
|
|
'c': c.transpose(0, 1).detach()}
|