This PR adds a new method for getting actions from an env's observation and info. This is useful for standard inference and stands in contrast to batch-based methods that are currently used in training and evaluation. Without this, users have to do some kind of gymnastics to actually perform inference with a trained policy. I have also added a test for the new method. In future PRs, this method should be included in the examples (in the the "watch" section). To add this required improving multiple typing things and, importantly, _simplifying the signature of `forward` in many policies!_ This is a **breaking change**, but it will likely affect no users. The `input` parameter of forward was a rather hacky mechanism, I believe it is good that it's gone now. It will also help with #948 . The main functional change is the addition of `compute_action` to `BasePolicy`. Other minor changes: - improvements in typing - updated PR and Issue templates - Improved handling of `max_action_num` Closes #981
180 lines
5.9 KiB
Python
180 lines
5.9 KiB
Python
import os
|
|
|
|
import cv2
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import vizdoom as vzd
|
|
|
|
from tianshou.env import ShmemVectorEnv
|
|
|
|
try:
|
|
import envpool
|
|
except ImportError:
|
|
envpool = None
|
|
|
|
|
|
def normal_button_comb():
|
|
actions = []
|
|
m_forward = [[0.0], [1.0]]
|
|
t_left_right = [[0.0, 0.0], [0.0, 1.0], [1.0, 0.0]]
|
|
for i in m_forward:
|
|
for j in t_left_right:
|
|
actions.append(i + j)
|
|
return actions
|
|
|
|
|
|
def battle_button_comb():
|
|
actions = []
|
|
m_forward_backward = [[0.0, 0.0], [0.0, 1.0], [1.0, 0.0]]
|
|
m_left_right = [[0.0, 0.0], [0.0, 1.0], [1.0, 0.0]]
|
|
t_left_right = [[0.0, 0.0], [0.0, 1.0], [1.0, 0.0]]
|
|
attack = [[0.0], [1.0]]
|
|
speed = [[0.0], [1.0]]
|
|
|
|
for m in attack:
|
|
for n in speed:
|
|
for j in m_left_right:
|
|
for i in m_forward_backward:
|
|
for k in t_left_right:
|
|
actions.append(i + j + k + m + n)
|
|
return actions
|
|
|
|
|
|
class Env(gym.Env):
|
|
def __init__(self, cfg_path, frameskip=4, res=(4, 40, 60), save_lmp=False):
|
|
super().__init__()
|
|
self.save_lmp = save_lmp
|
|
self.health_setting = "battle" in cfg_path
|
|
if save_lmp:
|
|
os.makedirs("lmps", exist_ok=True)
|
|
self.res = res
|
|
self.skip = frameskip
|
|
self.observation_space = gym.spaces.Box(low=0, high=255, shape=res, dtype=np.float32)
|
|
self.game = vzd.DoomGame()
|
|
self.game.load_config(cfg_path)
|
|
self.game.init()
|
|
if "battle" in cfg_path:
|
|
self.available_actions = battle_button_comb()
|
|
else:
|
|
self.available_actions = normal_button_comb()
|
|
self.action_num = len(self.available_actions)
|
|
self.action_space = gym.spaces.Discrete(self.action_num)
|
|
self.spec = gym.envs.registration.EnvSpec("vizdoom-v0")
|
|
self.count = 0
|
|
|
|
def get_obs(self):
|
|
state = self.game.get_state()
|
|
if state is None:
|
|
return
|
|
obs = state.screen_buffer
|
|
self.obs_buffer[:-1] = self.obs_buffer[1:]
|
|
self.obs_buffer[-1] = cv2.resize(obs, (self.res[-1], self.res[-2]))
|
|
|
|
def reset(self):
|
|
if self.save_lmp:
|
|
self.game.new_episode(f"lmps/episode_{self.count}.lmp")
|
|
else:
|
|
self.game.new_episode()
|
|
self.count += 1
|
|
self.obs_buffer = np.zeros(self.res, dtype=np.uint8)
|
|
self.get_obs()
|
|
self.health = self.game.get_game_variable(vzd.GameVariable.HEALTH)
|
|
self.killcount = self.game.get_game_variable(vzd.GameVariable.KILLCOUNT)
|
|
self.ammo2 = self.game.get_game_variable(vzd.GameVariable.AMMO2)
|
|
return self.obs_buffer
|
|
|
|
def step(self, action):
|
|
self.game.make_action(self.available_actions[action], self.skip)
|
|
reward = 0.0
|
|
self.get_obs()
|
|
health = self.game.get_game_variable(vzd.GameVariable.HEALTH)
|
|
if self.health_setting or health > self.health: # positive health reward only for d1/d2
|
|
reward += health - self.health
|
|
self.health = health
|
|
killcount = self.game.get_game_variable(vzd.GameVariable.KILLCOUNT)
|
|
reward += 20 * (killcount - self.killcount)
|
|
self.killcount = killcount
|
|
ammo2 = self.game.get_game_variable(vzd.GameVariable.AMMO2)
|
|
# if ammo2 > self.ammo2:
|
|
reward += ammo2 - self.ammo2
|
|
self.ammo2 = ammo2
|
|
done = False
|
|
info = {}
|
|
if self.game.is_player_dead() or self.game.get_state() is None:
|
|
done = True
|
|
elif self.game.is_episode_finished():
|
|
done = True
|
|
info["TimeLimit.truncated"] = True
|
|
return self.obs_buffer, reward, done, info
|
|
|
|
def render(self):
|
|
pass
|
|
|
|
def close(self):
|
|
self.game.close()
|
|
|
|
|
|
def make_vizdoom_env(task, frame_skip, res, save_lmp, seed, training_num, test_num):
|
|
test_num = min(os.cpu_count() - 1, test_num)
|
|
if envpool is not None:
|
|
task_id = "".join([i.capitalize() for i in task.split("_")]) + "-v1"
|
|
lmp_save_dir = "lmps/" if save_lmp else ""
|
|
reward_config = {
|
|
"KILLCOUNT": [20.0, -20.0],
|
|
"HEALTH": [1.0, 0.0],
|
|
"AMMO2": [1.0, -1.0],
|
|
}
|
|
if "battle" in task:
|
|
reward_config["HEALTH"] = [1.0, -1.0]
|
|
env = train_envs = envpool.make_gymnasium(
|
|
task_id,
|
|
frame_skip=frame_skip,
|
|
stack_num=res[0],
|
|
seed=seed,
|
|
num_envs=training_num,
|
|
reward_config=reward_config,
|
|
use_combined_action=True,
|
|
max_episode_steps=2625,
|
|
use_inter_area_resize=False,
|
|
)
|
|
test_envs = envpool.make_gymnasium(
|
|
task_id,
|
|
frame_skip=frame_skip,
|
|
stack_num=res[0],
|
|
lmp_save_dir=lmp_save_dir,
|
|
seed=seed,
|
|
num_envs=test_num,
|
|
reward_config=reward_config,
|
|
use_combined_action=True,
|
|
max_episode_steps=2625,
|
|
use_inter_area_resize=False,
|
|
)
|
|
else:
|
|
cfg_path = f"maps/{task}.cfg"
|
|
env = Env(cfg_path, frame_skip, res)
|
|
train_envs = ShmemVectorEnv(
|
|
[lambda: Env(cfg_path, frame_skip, res) for _ in range(training_num)],
|
|
)
|
|
test_envs = ShmemVectorEnv(
|
|
[lambda: Env(cfg_path, frame_skip, res, save_lmp) for _ in range(test_num)],
|
|
)
|
|
train_envs.seed(seed)
|
|
test_envs.seed(seed)
|
|
return env, train_envs, test_envs
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# env = Env("maps/D1_basic.cfg", 4, (4, 84, 84))
|
|
env = Env("maps/D3_battle.cfg", 4, (4, 84, 84))
|
|
print(env.available_actions)
|
|
action_num = env.action_space.n
|
|
obs = env.reset()
|
|
print(env.spec.reward_threshold)
|
|
print(obs.shape, action_num)
|
|
for _ in range(4000):
|
|
obs, rew, terminated, truncated, info = env.step(0)
|
|
if terminated or truncated:
|
|
env.reset()
|
|
print(obs.shape, rew, terminated, truncated)
|
|
cv2.imwrite("test.png", obs.transpose(1, 2, 0)[..., :3])
|