2017-12-23 02:48:53 +08:00

176 lines
6.5 KiB
Python

import numpy as np
import math
import time
import sys,os
from .utils import list2tuple, tuple2list
class MCTSNode(object):
def __init__(self, parent, action, state, action_num, prior, inverse=False):
self.parent = parent
self.action = action
self.children = {}
self.state = state
self.action_num = action_num
self.prior = np.array(prior).reshape(-1)
self.inverse = inverse
def selection(self, simulator):
raise NotImplementedError("Need to implement function selection")
def backpropagation(self, action):
raise NotImplementedError("Need to implement function backpropagation")
def valid_mask(self, simulator):
pass
class UCTNode(MCTSNode):
def __init__(self, parent, action, state, action_num, prior, inverse=False, c_puct = 5):
super(UCTNode, self).__init__(parent, action, state, action_num, prior, inverse)
self.Q = np.zeros([action_num])
self.W = np.zeros([action_num])
self.N = np.zeros([action_num])
self.c_puct = c_puct
self.ucb = self.Q + self.c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1)
self.mask = None
def selection(self, simulator):
self.valid_mask(simulator)
action = np.argmax(self.ucb)
if action in self.children.keys():
return self.children[action].selection(simulator)
else:
self.children[action] = ActionNode(self, action)
return self.children[action].selection(simulator)
def backpropagation(self, action):
action = int(action)
self.N[action] += 1
self.W[action] += self.children[action].reward
for i in range(self.action_num):
if self.N[i] != 0:
self.Q[i] = (self.W[i] + 0.) / self.N[i]
self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1.)
if self.parent is not None:
if self.inverse:
self.parent.backpropagation(-self.children[action].reward)
else:
self.parent.backpropagation(self.children[action].reward)
def valid_mask(self, simulator):
if self.mask is None:
start_time = time.time()
self.mask = []
for act in range(self.action_num - 1):
if not simulator.simulate_is_valid(self.state, act):
self.mask.append(act)
self.ucb[act] = -float("Inf")
else:
self.ucb[self.mask] = -float("Inf")
class TSNode(MCTSNode):
def __init__(self, parent, action, state, action_num, prior, method="Gaussian", inverse=False):
super(TSNode, self).__init__(parent, action, state, action_num, prior, inverse)
if method == "Beta":
self.alpha = np.ones([action_num])
self.beta = np.ones([action_num])
if method == "Gaussian":
self.mu = np.zeros([action_num])
self.sigma = np.zeros([action_num])
class ActionNode(object):
def __init__(self, parent, action):
self.parent = parent
self.action = action
self.children = {}
self.next_state = None
self.origin_state = None
self.state_type = None
self.reward = 0
def type_conversion_to_tuple(self):
if type(self.next_state) is np.ndarray:
self.next_state = self.next_state.tolist()
if type(self.next_state) is list:
self.next_state = list2tuple(self.next_state)
def type_conversion_to_origin(self):
if self.state_type is np.ndarray:
self.next_state = np.array(self.next_state)
if self.state_type is list:
self.next_state = tuple2list(self.next_state)
def selection(self, simulator):
self.next_state, self.reward = simulator.step_forward(self.parent.state, self.action)
self.origin_state = self.next_state
self.state_type = type(self.next_state)
self.type_conversion_to_tuple()
if self.next_state is not None:
if self.next_state in self.children.keys():
return self.children[self.next_state].selection(simulator)
else:
return self.parent, self.action
else:
return self.parent, self.action
def expansion(self, evaluator, action_num):
if self.next_state is not None:
prior, value = evaluator(self.next_state)
self.children[self.next_state] = UCTNode(self, self.action, self.origin_state, action_num, prior,
self.parent.inverse)
return value
else:
return 0.
def backpropagation(self, value):
self.reward += value
self.parent.backpropagation(self.action)
class MCTS(object):
def __init__(self, simulator, evaluator, root, action_num, method="UCT", inverse=False, max_step=None,
max_time=None):
self.simulator = simulator
self.evaluator = evaluator
prior, _ = self.evaluator(root)
self.action_num = action_num
if method == "":
self.root = root
if method == "UCT":
self.root = UCTNode(None, None, root, action_num, prior, inverse)
if method == "TS":
self.root = TSNode(None, None, root, action_num, prior, inverse=inverse)
self.inverse = inverse
if max_step is not None:
self.step = 0
self.max_step = max_step
# TODO: Optimize the stop criteria
# else:
# self.max_step = 0
if max_time is not None:
self.start_time = time.time()
self.max_time = max_time
if max_step is None and max_time is None:
raise ValueError("Need a stop criteria!")
# TODO: running mcts should be implemented in another function, e.g. def search(self, max_step, max_time)
self.select_time = []
self.evaluate_time = []
self.bp_time = []
while (max_step is not None and self.step < self.max_step or max_step is None) \
and (max_time is not None and time.time() - self.start_time < self.max_time or max_time is None):
self.expand()
if max_step is not None:
self.step += 1
def expand(self):
node, new_action = self.root.selection(self.simulator)
value = node.children[new_action].expansion(self.evaluator, self.action_num)
node.children[new_action].backpropagation(value + 0.)
if __name__ == "__main__":
pass