fixes some deprecation warnings due to new changes in gym version 0.23: - use `env.np_random.integers` instead of `env.np_random.randint` - support `seed` and `return_info` arguments for reset (addresses https://github.com/thu-ml/tianshou/issues/605)
109 lines
3.5 KiB
Python
109 lines
3.5 KiB
Python
from abc import ABC, abstractmethod
|
|
from typing import Any, Callable, List, Optional, Tuple, Union
|
|
|
|
import gym
|
|
import numpy as np
|
|
|
|
from tianshou.utils import deprecation
|
|
|
|
|
|
class EnvWorker(ABC):
|
|
"""An abstract worker for an environment."""
|
|
|
|
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
|
|
self._env_fn = env_fn
|
|
self.is_closed = False
|
|
self.result: Union[Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
|
|
Tuple[np.ndarray, dict], np.ndarray]
|
|
self.action_space = self.get_env_attr("action_space") # noqa: B009
|
|
self.is_reset = False
|
|
|
|
@abstractmethod
|
|
def get_env_attr(self, key: str) -> Any:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def set_env_attr(self, key: str, value: Any) -> None:
|
|
pass
|
|
|
|
def send(self, action: Optional[np.ndarray]) -> None:
|
|
"""Send action signal to low-level worker.
|
|
|
|
When action is None, it indicates sending "reset" signal; otherwise
|
|
it indicates "step" signal. The paired return value from "recv"
|
|
function is determined by such kind of different signal.
|
|
"""
|
|
if hasattr(self, "send_action"):
|
|
deprecation(
|
|
"send_action will soon be deprecated. "
|
|
"Please use send and recv for your own EnvWorker."
|
|
)
|
|
if action is None:
|
|
self.is_reset = True
|
|
self.result = self.reset()
|
|
else:
|
|
self.is_reset = False
|
|
self.send_action(action) # type: ignore
|
|
|
|
def recv(
|
|
self
|
|
) -> Union[Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray], Tuple[
|
|
np.ndarray, dict], np.ndarray]: # noqa:E125
|
|
"""Receive result from low-level worker.
|
|
|
|
If the last "send" function sends a NULL action, it only returns a
|
|
single observation; otherwise it returns a tuple of (obs, rew, done,
|
|
info).
|
|
"""
|
|
if hasattr(self, "get_result"):
|
|
deprecation(
|
|
"get_result will soon be deprecated. "
|
|
"Please use send and recv for your own EnvWorker."
|
|
)
|
|
if not self.is_reset:
|
|
self.result = self.get_result() # type: ignore
|
|
return self.result
|
|
|
|
@abstractmethod
|
|
def reset(self, **kwargs: Any) -> Union[np.ndarray, Tuple[np.ndarray, dict]]:
|
|
pass
|
|
|
|
def step(
|
|
self, action: np.ndarray
|
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
"""Perform one timestep of the environment's dynamic.
|
|
|
|
"send" and "recv" are coupled in sync simulation, so users only call
|
|
"step" function. But they can be called separately in async
|
|
simulation, i.e. someone calls "send" first, and calls "recv" later.
|
|
"""
|
|
self.send(action)
|
|
return self.recv() # type: ignore
|
|
|
|
@staticmethod
|
|
def wait(
|
|
workers: List["EnvWorker"],
|
|
wait_num: int,
|
|
timeout: Optional[float] = None
|
|
) -> List["EnvWorker"]:
|
|
"""Given a list of workers, return those ready ones."""
|
|
raise NotImplementedError
|
|
|
|
def seed(self, seed: Optional[int] = None) -> Optional[List[int]]:
|
|
return self.action_space.seed(seed) # issue 299
|
|
|
|
@abstractmethod
|
|
def render(self, **kwargs: Any) -> Any:
|
|
"""Render the environment."""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def close_env(self) -> None:
|
|
pass
|
|
|
|
def close(self) -> None:
|
|
if self.is_closed:
|
|
return None
|
|
self.is_closed = True
|
|
self.close_env()
|