Yifei Cheng 43792bf5ab
Upgrade gym (#613)
fixes some deprecation warnings due to new changes in gym version 0.23:
- use `env.np_random.integers` instead of `env.np_random.randint`
- support `seed` and `return_info` arguments for reset (addresses https://github.com/thu-ml/tianshou/issues/605)
2022-06-28 06:52:21 +08:00

109 lines
3.5 KiB
Python

from abc import ABC, abstractmethod
from typing import Any, Callable, List, Optional, Tuple, Union
import gym
import numpy as np
from tianshou.utils import deprecation
class EnvWorker(ABC):
"""An abstract worker for an environment."""
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
self._env_fn = env_fn
self.is_closed = False
self.result: Union[Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray],
Tuple[np.ndarray, dict], np.ndarray]
self.action_space = self.get_env_attr("action_space") # noqa: B009
self.is_reset = False
@abstractmethod
def get_env_attr(self, key: str) -> Any:
pass
@abstractmethod
def set_env_attr(self, key: str, value: Any) -> None:
pass
def send(self, action: Optional[np.ndarray]) -> None:
"""Send action signal to low-level worker.
When action is None, it indicates sending "reset" signal; otherwise
it indicates "step" signal. The paired return value from "recv"
function is determined by such kind of different signal.
"""
if hasattr(self, "send_action"):
deprecation(
"send_action will soon be deprecated. "
"Please use send and recv for your own EnvWorker."
)
if action is None:
self.is_reset = True
self.result = self.reset()
else:
self.is_reset = False
self.send_action(action) # type: ignore
def recv(
self
) -> Union[Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray], Tuple[
np.ndarray, dict], np.ndarray]: # noqa:E125
"""Receive result from low-level worker.
If the last "send" function sends a NULL action, it only returns a
single observation; otherwise it returns a tuple of (obs, rew, done,
info).
"""
if hasattr(self, "get_result"):
deprecation(
"get_result will soon be deprecated. "
"Please use send and recv for your own EnvWorker."
)
if not self.is_reset:
self.result = self.get_result() # type: ignore
return self.result
@abstractmethod
def reset(self, **kwargs: Any) -> Union[np.ndarray, Tuple[np.ndarray, dict]]:
pass
def step(
self, action: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Perform one timestep of the environment's dynamic.
"send" and "recv" are coupled in sync simulation, so users only call
"step" function. But they can be called separately in async
simulation, i.e. someone calls "send" first, and calls "recv" later.
"""
self.send(action)
return self.recv() # type: ignore
@staticmethod
def wait(
workers: List["EnvWorker"],
wait_num: int,
timeout: Optional[float] = None
) -> List["EnvWorker"]:
"""Given a list of workers, return those ready ones."""
raise NotImplementedError
def seed(self, seed: Optional[int] = None) -> Optional[List[int]]:
return self.action_space.seed(seed) # issue 299
@abstractmethod
def render(self, **kwargs: Any) -> Any:
"""Render the environment."""
pass
@abstractmethod
def close_env(self) -> None:
pass
def close(self) -> None:
if self.is_closed:
return None
self.is_closed = True
self.close_env()