Yifei Cheng 43792bf5ab
Upgrade gym (#613)
fixes some deprecation warnings due to new changes in gym version 0.23:
- use `env.np_random.integers` instead of `env.np_random.randint`
- support `seed` and `return_info` arguments for reset (addresses https://github.com/thu-ml/tianshou/issues/605)
2022-06-28 06:52:21 +08:00

76 lines
2.3 KiB
Python

from typing import Any, Callable, List, Optional, Tuple, Union
import gym
import numpy as np
from tianshou.env.worker import EnvWorker
try:
import ray
except ImportError:
pass
class _SetAttrWrapper(gym.Wrapper):
def set_env_attr(self, key: str, value: Any) -> None:
setattr(self.env, key, value)
def get_env_attr(self, key: str) -> Any:
return getattr(self.env, key)
class RayEnvWorker(EnvWorker):
"""Ray worker used in RayVectorEnv."""
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
self.env = ray.remote(_SetAttrWrapper).options( # type: ignore
num_cpus=0
).remote(env_fn())
super().__init__(env_fn)
def get_env_attr(self, key: str) -> Any:
return ray.get(self.env.get_env_attr.remote(key))
def set_env_attr(self, key: str, value: Any) -> None:
ray.get(self.env.set_env_attr.remote(key, value))
def reset(self, **kwargs: Any) -> Any:
if "seed" in kwargs:
super().seed(kwargs["seed"])
return ray.get(self.env.reset.remote(**kwargs))
@staticmethod
def wait( # type: ignore
workers: List["RayEnvWorker"], wait_num: int, timeout: Optional[float] = None
) -> List["RayEnvWorker"]:
results = [x.result for x in workers]
ready_results, _ = ray.wait(results, num_returns=wait_num, timeout=timeout)
return [workers[results.index(result)] for result in ready_results]
def send(self, action: Optional[np.ndarray], **kwargs: Any) -> None:
# self.result is actually a handle
if action is None:
self.result = self.env.reset.remote(**kwargs)
else:
self.result = self.env.step.remote(action)
def recv(
self
) -> Union[Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray], np.ndarray]:
return ray.get(self.result) # type: ignore
def seed(self, seed: Optional[int] = None) -> Optional[List[int]]:
super().seed(seed)
try:
return ray.get(self.env.seed.remote(seed))
except NotImplementedError:
self.env.reset.remote(seed=seed)
return None
def render(self, **kwargs: Any) -> Any:
return ray.get(self.env.render.remote(**kwargs))
def close_env(self) -> None:
ray.get(self.env.close.remote())