Things changed in this PR: - various docs update, add TOC - split buffer into several files - fix venv action_space randomness
218 lines
7.5 KiB
Python
218 lines
7.5 KiB
Python
import gym
|
|
import time
|
|
import ctypes
|
|
import numpy as np
|
|
from collections import OrderedDict
|
|
from multiprocessing.context import Process
|
|
from multiprocessing import Array, Pipe, connection
|
|
from typing import Any, List, Tuple, Union, Callable, Optional
|
|
|
|
from tianshou.env.worker import EnvWorker
|
|
from tianshou.env.utils import CloudpickleWrapper
|
|
|
|
|
|
_NP_TO_CT = {
|
|
np.bool: ctypes.c_bool,
|
|
np.bool_: ctypes.c_bool,
|
|
np.uint8: ctypes.c_uint8,
|
|
np.uint16: ctypes.c_uint16,
|
|
np.uint32: ctypes.c_uint32,
|
|
np.uint64: ctypes.c_uint64,
|
|
np.int8: ctypes.c_int8,
|
|
np.int16: ctypes.c_int16,
|
|
np.int32: ctypes.c_int32,
|
|
np.int64: ctypes.c_int64,
|
|
np.float32: ctypes.c_float,
|
|
np.float64: ctypes.c_double,
|
|
}
|
|
|
|
|
|
class ShArray:
|
|
"""Wrapper of multiprocessing Array."""
|
|
|
|
def __init__(self, dtype: np.generic, shape: Tuple[int]) -> None:
|
|
self.arr = Array(_NP_TO_CT[dtype.type], int(np.prod(shape)))
|
|
self.dtype = dtype
|
|
self.shape = shape
|
|
|
|
def save(self, ndarray: np.ndarray) -> None:
|
|
assert isinstance(ndarray, np.ndarray)
|
|
dst = self.arr.get_obj()
|
|
dst_np = np.frombuffer(dst, dtype=self.dtype).reshape(self.shape)
|
|
np.copyto(dst_np, ndarray)
|
|
|
|
def get(self) -> np.ndarray:
|
|
obj = self.arr.get_obj()
|
|
return np.frombuffer(obj, dtype=self.dtype).reshape(self.shape)
|
|
|
|
|
|
def _setup_buf(space: gym.Space) -> Union[dict, tuple, ShArray]:
|
|
if isinstance(space, gym.spaces.Dict):
|
|
assert isinstance(space.spaces, OrderedDict)
|
|
return {k: _setup_buf(v) for k, v in space.spaces.items()}
|
|
elif isinstance(space, gym.spaces.Tuple):
|
|
assert isinstance(space.spaces, tuple)
|
|
return tuple([_setup_buf(t) for t in space.spaces])
|
|
else:
|
|
return ShArray(space.dtype, space.shape)
|
|
|
|
|
|
def _worker(
|
|
parent: connection.Connection,
|
|
p: connection.Connection,
|
|
env_fn_wrapper: CloudpickleWrapper,
|
|
obs_bufs: Optional[Union[dict, tuple, ShArray]] = None,
|
|
) -> None:
|
|
def _encode_obs(
|
|
obs: Union[dict, tuple, np.ndarray],
|
|
buffer: Union[dict, tuple, ShArray],
|
|
) -> None:
|
|
if isinstance(obs, np.ndarray) and isinstance(buffer, ShArray):
|
|
buffer.save(obs)
|
|
elif isinstance(obs, tuple) and isinstance(buffer, tuple):
|
|
for o, b in zip(obs, buffer):
|
|
_encode_obs(o, b)
|
|
elif isinstance(obs, dict) and isinstance(buffer, dict):
|
|
for k in obs.keys():
|
|
_encode_obs(obs[k], buffer[k])
|
|
return None
|
|
|
|
parent.close()
|
|
env = env_fn_wrapper.data()
|
|
try:
|
|
while True:
|
|
try:
|
|
cmd, data = p.recv()
|
|
except EOFError: # the pipe has been closed
|
|
p.close()
|
|
break
|
|
if cmd == "step":
|
|
obs, reward, done, info = env.step(data)
|
|
if obs_bufs is not None:
|
|
_encode_obs(obs, obs_bufs)
|
|
obs = None
|
|
p.send((obs, reward, done, info))
|
|
elif cmd == "reset":
|
|
obs = env.reset()
|
|
if obs_bufs is not None:
|
|
_encode_obs(obs, obs_bufs)
|
|
obs = None
|
|
p.send(obs)
|
|
elif cmd == "close":
|
|
p.send(env.close())
|
|
p.close()
|
|
break
|
|
elif cmd == "render":
|
|
p.send(env.render(**data) if hasattr(env, "render") else None)
|
|
elif cmd == "seed":
|
|
p.send(env.seed(data) if hasattr(env, "seed") else None)
|
|
elif cmd == "getattr":
|
|
p.send(getattr(env, data) if hasattr(env, data) else None)
|
|
else:
|
|
p.close()
|
|
raise NotImplementedError
|
|
except KeyboardInterrupt:
|
|
p.close()
|
|
|
|
|
|
class SubprocEnvWorker(EnvWorker):
|
|
"""Subprocess worker used in SubprocVectorEnv and ShmemVectorEnv."""
|
|
|
|
def __init__(
|
|
self, env_fn: Callable[[], gym.Env], share_memory: bool = False
|
|
) -> None:
|
|
self.parent_remote, self.child_remote = Pipe()
|
|
self.share_memory = share_memory
|
|
self.buffer: Optional[Union[dict, tuple, ShArray]] = None
|
|
if self.share_memory:
|
|
dummy = env_fn()
|
|
obs_space = dummy.observation_space
|
|
dummy.close()
|
|
del dummy
|
|
self.buffer = _setup_buf(obs_space)
|
|
args = (
|
|
self.parent_remote,
|
|
self.child_remote,
|
|
CloudpickleWrapper(env_fn),
|
|
self.buffer,
|
|
)
|
|
self.process = Process(target=_worker, args=args, daemon=True)
|
|
self.process.start()
|
|
self.child_remote.close()
|
|
super().__init__(env_fn)
|
|
|
|
def __getattr__(self, key: str) -> Any:
|
|
self.parent_remote.send(["getattr", key])
|
|
return self.parent_remote.recv()
|
|
|
|
def _decode_obs(self) -> Union[dict, tuple, np.ndarray]:
|
|
def decode_obs(
|
|
buffer: Optional[Union[dict, tuple, ShArray]]
|
|
) -> Union[dict, tuple, np.ndarray]:
|
|
if isinstance(buffer, ShArray):
|
|
return buffer.get()
|
|
elif isinstance(buffer, tuple):
|
|
return tuple([decode_obs(b) for b in buffer])
|
|
elif isinstance(buffer, dict):
|
|
return {k: decode_obs(v) for k, v in buffer.items()}
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
return decode_obs(self.buffer)
|
|
|
|
def reset(self) -> Any:
|
|
self.parent_remote.send(["reset", None])
|
|
obs = self.parent_remote.recv()
|
|
if self.share_memory:
|
|
obs = self._decode_obs()
|
|
return obs
|
|
|
|
@staticmethod
|
|
def wait( # type: ignore
|
|
workers: List["SubprocEnvWorker"],
|
|
wait_num: int,
|
|
timeout: Optional[float] = None,
|
|
) -> List["SubprocEnvWorker"]:
|
|
remain_conns = conns = [x.parent_remote for x in workers]
|
|
ready_conns: List[connection.Connection] = []
|
|
remain_time, t1 = timeout, time.time()
|
|
while len(remain_conns) > 0 and len(ready_conns) < wait_num:
|
|
if timeout:
|
|
remain_time = timeout - (time.time() - t1)
|
|
if remain_time <= 0:
|
|
break
|
|
# connection.wait hangs if the list is empty
|
|
new_ready_conns = connection.wait(remain_conns, timeout=remain_time)
|
|
ready_conns.extend(new_ready_conns) # type: ignore
|
|
remain_conns = [conn for conn in remain_conns if conn not in ready_conns]
|
|
return [workers[conns.index(con)] for con in ready_conns]
|
|
|
|
def send_action(self, action: np.ndarray) -> None:
|
|
self.parent_remote.send(["step", action])
|
|
|
|
def get_result(self) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
|
obs, rew, done, info = self.parent_remote.recv()
|
|
if self.share_memory:
|
|
obs = self._decode_obs()
|
|
return obs, rew, done, info
|
|
|
|
def seed(self, seed: Optional[int] = None) -> Optional[List[int]]:
|
|
super().seed(seed)
|
|
self.parent_remote.send(["seed", seed])
|
|
return self.parent_remote.recv()
|
|
|
|
def render(self, **kwargs: Any) -> Any:
|
|
self.parent_remote.send(["render", kwargs])
|
|
return self.parent_remote.recv()
|
|
|
|
def close_env(self) -> None:
|
|
try:
|
|
self.parent_remote.send(["close", None])
|
|
# mp may be deleted so it may raise AttributeError
|
|
self.parent_remote.recv()
|
|
self.process.join()
|
|
except (BrokenPipeError, EOFError, AttributeError):
|
|
pass
|
|
# ensure the subproc is terminated
|
|
self.process.terminate()
|